
Partial Evaluation of Model Transformations

Ali Razavi
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada

arazavi@swen.uwaterloo.ca

Kostas Kontogiannis
Department of Electrical and Computer Engineering

National Technical University of Athens
Athens, Greece

kkontog@softlab.ntua.gr

Abstract—Model Transformation is considered an important
enabling factor for Model Driven Development. Transforma-
tions can be applied not only for the generation of new models
from existing ones, but also for the consistent co-evolution of
software artifacts that pertain to various phases of software
lifecycle such as requirement models, design documents and
source code. Furthermore, it is often common in practical
scenarios to apply such transformations repeatedly and fre-
quently; an activity that can take a significant amount of time
and resources, especially when the affected models are complex
and highly interdependent. In this paper, we discuss a novel
approach for deriving incremental model transformations by
the partial evaluation of original model transformation pro-
grams. Partial evaluation involves pre-computing parts of the
transformation program based on known model dependencies
and the type of the applied model change. Such pre-evaluation
allows for significant reduction of transformation time in large
and complex model repositories. To evaluate the approach, we
have implemented QvtMix, a prototype partial evaluator for the
Query, View and Transformation Operational Mappings (QVT-
OM) language. The experiments indicate that the proposed
technique can be used for significantly improving the perfor-
mance of repetitive applications of model transformations.

I. INTRODUCTION

Model Driven Engineering (MDE) is an emerging
paradigm whose fundamental objective is to raise the level
of abstraction in the software development process. The
basic premise of Model Driven Engineering (MDE) is that
software artifacts can be represented as collections of mod-
els, which adhere to standardized meta-modeling formalisms
such as the Meta Object Facility (MOF) or the Eclipse
Modeling Framework (EMF). In addition to serving as a
medium for documentation, MDE aspires to promote models
to first-class development artifacts. To this end, various
model transformation frameworks have been proposed to
facilitate bridging levels of abstraction between models, and
even use models to generate executable code [4].

To be practically relevant, MDE should also support mod-
ern iterative and incremental development processes (a.g.,
Agile methodologies). When commencing the development
of a system in MDE style, the initial models need to be
transformed into multitudes of formats to realize a concrete
system. The models then, being first class entities, should be
refined for maintenance purposes, which necessitates their

re-transformation. Unlike code-based development, simple
make-like programs are, however, not adequate for effective
handling of model transformations. This is mostly because
models are modularized in a rather different way than source
code, with a different coupling and cohesion characteristics.
MDE encourages developing models that describe a certain
perspective of the underlying system, and the dependencies
of such models with other models in a project tend to
be context dependent. For instance, when using UML to
describe a system and transforming it to Java code, the
details of what constitutes an underlying class in Java can
be scattered across, amongst others, class diagrams and
sequence diagrams. Consequently, a change made to the
class diagram would need to be weaved with the sequence
diagram to form the target Java class.

In this context, a common problem that arises is that in
order to keep these models synchronized and consistent with
each other, one has to re-apply all transformations in all
models so that a complete re-generation of all model artifacts
is achieved. Plain re-transformation can be intractable for
large models and/or complex transformations. Therefore,
incremental model transformations are considered to be the
proper mitigation strategy for keeping the source and target
of transformations synchronized [9].

Most existing MDE frameworks utilize transformations
that are denoted either by a declarative style language–in
the form of logical relations or functional mappings–for
cases in which there exist clear correspondences between
the elements of both sides of the transformations– or by
imperative style languages when mutual relationships of
models are less evident. As we review in the next section, the
body of research work on incremental model transformation
primarily addresses the issue for the declarative model
transformation languages. However, incremental transforma-
tion of imperative model transformation languages, due to
the familiarity of developers with this style and also the
richer expressiveness they offer, are just as important. In
this paper, we propose an approach to increase the perfor-
mance of model transformation process based on the partial
evaluation of transformation programs. Partial evaluation
is an established methodology in programming languages
research that is based on the premise that programs can

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE ICSE 2012, Zurich, Switzerland562

be executed on a subset of input data known a priori,
so as to generate a residual program, whose expressions
are, to the extent allowed by the availability of known
data, are statically pre-evaluated. Thus, the residual program,
when executed over the dynamic inputs, does not need to
compute the parts of the code that only correspond to known
inputs. Performing fewer computations at runtime, residual
programs are expected to perform better than their original
counterparts [10], [1], [12], [11].

The basic premise of our proposed approach is that model
transformations are also a kind of software programs, which
get as input instances of a metamodel (e.g., MOF or similarly
Ecore). When a transformation is applied iteratively, the
altered elements of the source model can be considered
as dynamic data, and the invariant fragments as static. The
objective is to reduce the number of computations performed
when a complex transformation is invoked by pre-computing
and storing in a residual transformation the expressions that
are not affected by a model change. As a proof of concept,
we have developed a prototype of a partial evaluator for a
subset of OMG’s imperative model transformation language,
QVT Operational Mappings[14]. Transformations denoted
in QVT, and in other model transformation languages alike,
make extensive use of collection operations to manipulate
the elements of input models and their containers, in order
to form the target model. Therefore, our technique primarily
focuses on the specialization of these types of expressions.
In this respect, we have implemented a prototype partial
evaluator in QVT-OM itself. This design decision has two
important methodological consequences. On the one hand, it
adheres to the general philosophy of model driven engineer-
ing, which strives to treat all major software component as
models; in particular, the object of our partial evaluator–i.e.,
QVT transformation–are themselves treated as models, and
are manipulated as such. On the other hand, this enables the
concept of self-application, that is, specializing the partial
evaluator by itself.

The rest of the paper is organized as follows. Section II
discusses related work and lays the foundations for the
rest of the paper. Section III presents the outline of the
partial evaluation process. Section IV presents the detail
of the partial evaluation technique for the QVT-OM model
transformation language, explained through a running ex-
ample transformation. Section V reports and comments
on experimental results. Finally, Section VI concludes the
paper, and points to a number of future research directions.

II. BACKGROUND AND RELATED WORK

A. Background

Partial evaluation of software programs refers to the ap-
proach whereby parts of the program are pre-computed with
values of known inputs so as to yield a new residual program
which, when executed to a set of known and unknown inputs,
will compute only the parts of the program that correspond

to the unknown inputs. Because the residual program per-
forms fewer computation, it is expected to run faster than the
original program. More specifically, let JprogKL[in] = out
denote that prog is a program specified in language L and
produces output out for the sequence of inputs in. Suppose
that the first m inputs of the program are known before
the execution time and they are denoted as (k1, ..., km),
and the rest of the inputs are unknown and are denoted as
(u1, ..., un). A partial evaluator for prog is a program such
as PE , inputs of which are the source code of program prog
in language L, and its set of known inputs. It transforms the
input program to a specialization of it, referred to as progs,
with respect to this set of known inputs. Using the same
notation, we can denote JPEK[prog, k1, ..., km] = progs.
Because some of the expressions in prog are replaced
by statically pre-evaluated values in progs, the latter is
intuitively expected to run faster than the former. Partial
evaluation is a form of program transformation as it produces
another program as output. Running this program on the
remaining inputs (i.e., the unknowns) results in the same
output; thus JJPEK[prog, k1, ..., km]KL[u1, ..., un] = out.

Partial evaluation usually consists of two phases. During
the first phase, Binding Time Analysis, the source code of the
program is analyzed with respect to the set of known inputs
and its expressions are annotated as either static or dynamic.
Following this analysis, in the second phase, the constructs
that are determined to be static are evaluated, starting from
the inputs and progressively replacing each static expression
with its evaluated value. Dynamic expressions in contrast
are substituted with symbolic expressions that are derived
from the values of static expressions and other dependent
dynamic expressions. The second phase yields a program
called residual program, which only needs the unknown
subset of the inputs of the original program to run. There
are two common strategies to carry out these two phases;
explicitly and separately in offline evaluators, versus online
evaluation by performing static analysis on the go along with
specialization [11]. Either way, all the statically computable
expressions of the original programs are replaced with pre-
evaluated values in the residual program, thus will not be
recomputed during runtime.

B. Related Work

An elaborate classification of various model transforma-
tion approaches is presented in [4]. A prominent model
transformation framework is the OMG’s Query, View and
Transformation (QVT) which specifies three languages [14].
QVT Core and QVT Relations both define mappings be-
tween the two sides of transformations in a declarative
fashion. Both languages are also envisioned in the standard
to have built-in support for incremental and bi-directional
transformation. For specifying more sophisticated transfor-
mations whose mappings are not as straightforward as those
expressible by the Core and Relations languages, OMG

563

offers the QVT Operational Mappings (QVT-OM) language.
This language provides a hybrid collection of imperative
and declarative constructs, and is designed to operate in one
direction with no direct support for incremental execution
of transformations. As discussed, this essentially results
in redundant computation of unaffected model elements,
when the transformations are used iteratively. Amongst
other proposed model transformation frameworks are the
Atlas Transformation Language (ATL) [2], and Triple Graph
Grammars (TGG) [6]. ATL programs can be used to perform
syntactic or semantic model transformations and run on
top of a specialized virtual machine. Triple Graph Gram-
mar (TGG) is a graphical, declarative, incremental and
bi-directional model transformation methodology based on
graph transformation [16]. TGG is shown to be semantically
aligned with QVT Relations [7].

In the area of model synchronization, one solution that re-
lates to our work in the sense that it enhances existing trans-
formations to achieve model synchronization is SyncATL,
proposed by Xiong et al. in [18]. The authors have proposed
an extension to the bytecode of the ATL virtual machine [2],
whereby supporting automated, backward synchronization of
models linked by an ATL transformation. For the forward
synchronization, SyncATL relies on re-invoking the trans-
formation and merging the results with the existing target.
However, SyncATL does not address incremental synchro-
nization, as the framework relies on re-executing the trans-
formation in its entirety for forward change propagation.
Another framework with the theme of building incremental
synchronization around existing transformation engines is
presented in [8]. The Tefkat [13] transformation engine,
which has a declarative, logical flavor, is decorated with
support for incrementality. In Tefkat, transformation rules
are specified as logical predicates, which are reduced using
SLD resolution. Their synchronization framework avoids
redundant computations in the successive transformation of
the same model by preserving the intermediate SLD trees.

There exists a vast body of research on partial evaluation.
An excellent introductory resource is the book authored
by Jones et al. [11], which also provides an exhaustive
list of references to the existing literature. More concise
entry points to the area of partial evaluation can be found
in [10] and [3]. Sundaresh et al. [17] were amongst the
first researchers to exploit partial evaluation for deriving
incremental programs, albeit in the context of code-driven
programming languages. The indexing model employed in
[15] is similar to the scheme we have used for accessing the
elements of cached collections. To our knowledge, however,
all partial evaluation frameworks have hitherto focused on
the specializing the source code written in general purpose
programming languages; we are not aware of any other
research work that leverages partial evaluation techniques
in the context of model transformation languages. As we
discuss in Section IV, there also tend to be differences in

the specialization of model transformations, which rely ex-
tensively on collection manipulation, and ordinary programs,
wherein collection-based caching strategies are often not as
relevant.

III. SYSTEM ARCHITECTURE AND OVERALL PROCESS

A. System Architecture

The architecture of QvtMix, as depicted in Figure 1, is
structured as a two-layer system underpinning a static anal-
ysis pipeline. The first layer is an OCL expression evaluator
module serving the Partial Evaluator pipeline in the second
layer, which accepts as input a QVT program and a set of
known input data, and produces a new partially evaluated
(or specialized) OCL program. Below, we discuss in more
detail the major components of the proposed architecture:

• OCL Evaluator: The OCL Evaluator constitutes the
first layer of the architecture and serves to evaluate the
results of expressions as they are “statically” reduced by
the specializer. The OCL Evaluator forms the basis of
a meta-circular interpreter, that is, it is implemented in
the same language it interprets, i.e., QVT-OM. It main-
tains a lexcially scoped environment to store partially
evaluated values for static variables and an expandable
function environment to store residual functions gener-
ated during the specialization phase.

• OCL Parser: This component allows for the parsing
and linking of OCL expressions and emits their abstract
syntax. As our partial evaluator operates on Ecore
elements, the generated abstract syntax is represented
as a Ecore compliant model.

• Binding Time Analyzer: This component is responsible
for tagging variables and expressions as STATIC or
DYNAMIC. The BTA algorithm infers the binding time
of expressions from the subset of input data for which
the subject program is being specialized. For the case
of model transformations, we partition the input model
elements into fixed and variable, by annotating their
corresponding elements in the input metamodel with
a change specification. More specifically, the change
specification designates for each class, container and
attribute the possibility of modification (by tagging
them as VAR) or lack thereof–by tagging them as
FIXED. The BTA propagates the VAR and FIXED
tags through the expressions using a set of inference
rules. The result is the abstract syntax (in Ecore format)
annotated with binding-time tags on each expression
node.

• Specializer: This component accepts the abstract model
of the transformation and produces a model that de-
notes the partially evaluated program. The Specializer
operates in a syntax-directed fashion; it basically acts
as a visitor that traverses the annotated abstract syntax
tree, and applies a certain production rule to each

564

Original
Program Parser Binding Time

Analyzer
Specializer Pretty

Printer

Layer 1

Layer 2Evaluator /
Interpreter

Known
Input

Figure 1. System Architecture Diagram

expression. It uses the BTA annotations to pinpoint the
possibilities of static evaluation, passes such expres-
sions with appropriate values to the OCL Evaluator,
and creates a cache of the results in the program. The
static expressions are either replaced with constants or
subsequently reduced to reference the static values. The
transformation’s abstract syntax model is modified in
such a way to incorporate the cache of pre-evaluated
values and also residual expressions.

• Pretty Printer: This component accepts the abstract
model of the partially evaluated transformation and
produces source code text executable by the QVT-OM
engine.

B. Partial Evaluation Process

The overall process for the partial evaluation of model
transformations is depicted in Figure 2. The initial step is
parsing the subject transformation and obtaining its Abstract
Syntax Tree (AST). Along with the transformation, the
framework also loads the input and output metamodels, and
the change annotation information–that is, the annotations
that tell the user which elements of the source models are
fixed, and which ones are variable. The BTA framework
accepts user annotations of the input meta-model to guide
the partial evaluator about the possible classes of changes
and locality thereof, according to which the AST of the input
transformation is specialized. In the implementation, we use
the ‘eAnnotation‘ fragment of Ecore to augment the meta-
models with the FIXED and VAR meta-attributes, which are
accessible to the QVT-OM partial evaluator.

Our intuition is that this semi-automatic approach is often
congruent with the practice of software development. Just
like when programming, developers’ interaction with models
adheres to some pattern of locality and temporarily, that is,
the most immediate changes are most likely to occur in the
most recently modified part of the model, and are likely
to be of the same type of the most recent modification.
In programming, a developer is most likely to continue
modifying a class after its inception, by adding several
methods to it for example. Likewise, the model developer
will likely add further operations to a UML class in a

sequential manner. Therefore, the kind of guidance required
can be semi-automatically inferred from the user’s behavior
and the strategy adopted for specialization can be carried
out in a tractable fashion.

After the BTA, the partial evaluator traverses the AST
of the transformation, and for each transformation rule
found in the AST it performs the following actions. The
statically evaluated expressions whose results can be fully
evaluated at this time from the input model are evaluated
and their results are either stored in a table or inlined in
the code. More specifically, for scalar values, the result of
the yielding expressions is replaces the expressions, whereas
for collections the index up to which the input elements are
processed, is kept, and the values are stored in a static cache
outside the scope of the expression.

Parse
Transformation

For each Transformation Rule

Index Evaluated
Collections

Static Caching

Collection
Encoding

Transform
Expression

Coalesce Static
Values and

Dynamic Expr

Pretty Print

Model
Transformation

Change
Annotation

Source/Target
Metamodel

Output
Transformation

Figure 2. Overall Process of Partial Evaluation

The static caching step involves encoding the values of
the expression table created in the previous step in the
appropriate points in the AST. This is typically in the form
of local variables for each rule. More specifically, for each
variable (or interim value) in each OclCallExpr a local
dictionary variable corresponding to its statically evaluated
result is created and populated with the static result of the

565

expressions. Embedding these values sometimes requires
minor manipulation in the AST. The next two steps deal
with partitioning the collection expressions that appear in the
statements in the body of the rule where the output element’s
values are populated. Each expression is partitioned into a
static part, encoded as a dictionary or list in the previous
step, and the dynamic part that has to be evaluated. The
expressions need to be transformed into a new form that
operate only on the modified parts of the input. This is
generally done by utilizing the information stored in the
table created in the second step. Finally, the expression has
to merge the statically computed results with those evaluated
dynamically.

IV. PARTIAL EVALUATION

The partial evaluator is, in essence, a higher order trans-
formation written in QVT; it is implemented as a visitor
that uses a certain morphism strategy to evaluate static
expressions and mix them with dynamic expressions in
the form of residual code. The general algorithm, thus,
dispatches these specific transformations for each AST node
type. The AST is also represented as models compliant to
the QVT metamodel depicted in Figure 3, which allows us
to denote the partial evaluator in QVT-OM.

The most principal ones for QVT model transformations
are the AssignExp and VariableInitExp nodes. These two
are the syntactic constructs in QVT that are meant for es-
tablishing relationships between source and target elements.
They are used in the ordinary sense of the assignment
(that is, for assigning values to variables), and also for
establishing relationships between source and target model
elements. The specialization is further narrowed for specific
cases of IteratorExp, which take into account the semantics
of some of the standard library functions. Figure 4 presents
the simplified outline of the specialization process. The
specializer is basically a QVT transformation which has
two mapping rules per AST node: mix and reduce. The
latter processes fully static expressions and replaces them
with inline static values. The former strategy, on the other
hand, deals with dynamic expressions and tries to mix their
dynamic part with their reduced static sub-expressions. It
traverses the abstract syntax tree according to the semantic
information of the language. As it is illustrated in Figure 4
under the mapping rule for OperationalTransformation
(line 14-19), the structure of the QVT model is traversed
in a recursive fashion. The dispatching of mix mapping
rules is carried out polymorphically according to the object
oriented rules of the QVT-OM language, and the inheritance
hierarchy of the input meta-model, i.e., the QVT metamodel
itself which is loaded on line 1.

The code also provides a feel of how higher-order trans-
formations are denoted in QVT. In Figure 5, the mixer algo-
rithm for one of the nodes of the AST, i.e., VariableInitExp
is presented. This portion of the mix algorithm for this

01: modeltype QVT uses
 qvtoperational::expressions('http:://...');//...

02: transformation QvtMix(

in inModel : QVT, out residue : QVT
);

03: property qvtSrc :

OperationalTransformation = null; //...

04: intermediate class BTA {};

05: intermediate class STATIC extends BTA {};

06: intermediate class DYNAMIC extends BTA {};

07: helper ocl::ecore::OCLExpression::bta() : BTA

{//...}

08: main() {

09: qvtSrc := inModel.rootObjects()
 [OperationalTransformation]->

asOrderedSet()->first();
10: qvtSrc.map mix();
11: }

12: mapping ASTNode::mix() : ASTNode

{ init {} population {result := self;}}

13: mapping ASTNode::reduce() : ASTNode

{Init {} population {result := self;}}

14: mapping OperationalTransformation::mix() : ASTNode
 {
15: init {

16: self.eOperations->

17: select(op |

op.oclIsKindOf(MappingOperation))->

18: oclAsType(MappingOperation)->map mix();

//...
19: }

20: mapping MappingOperation::mix() : ASTNode {

21: init {

22: self.body.map mix(); //...
23: }
24: mapping MappingBody::mix() : ASTNode {

25: init {

26: self.initSection->map mix();

27: self.content->map mix();

28: self.endSection->map mix();//...
29: } //...

Figure 4. QvtMix Transformation

AST node shows how it is possible to programmatically
alter the abstract syntax tree of the transformations. More
specifically, the mapping rule checks whether the variable
that is being initialized has the type of a collection (e.g.,
OrderedSet or List), and whether its binding time is dy-
namic. If so, it adds a dictionary as a global property to
the subject transformation, corresponding with the name of
the variable. This dictionary is used for book-keeping the
indices of the statically evaluated and cached values. The
reduce mapping is subsequently called to perform applicable
reduction rule on the initExpression part (line 18). This
transforms the expression to a residue expression that in
lieu of computing the collection again, simply looks up the
cached pre-computed values and merges them with the new,
dynamic inputs.

Calls to select collection expressions are reduced in two
ways depending on the type of their condition predicate. This
distinction is made to facilitate the population and lookup
of dictionaries used for static caching. For the predicates
that select models based on constant literals or variables of
primitive types such as String, the value of the indexer in
the predicate is used as the key for the dictionary. On the

566

Figure 3. Simplified Metamodel of QVT Operational Mappings

01: mapping VariableInitExp::mix() : ASTNode {
02: init {
03: var expr := self.referredVariable.initExpression;
04: var res := object VariableInitExp{};
05: result := object VariableInitExp{};
06: }
07: population {
08: if self.eType.oclIsKindOf(CollectionType) and

 self.bta().oclIsKindOf(DYNAMIC) then

{
09: qvtSrc->eStructuralFeatures->append(
10: object EAttribute {
11: name := '__' + self.name + '_inds';
12: eType := object DictionaryType {
13: name := 'Dict(Integer,Integer)';
14: keyType :=

object PrimitiveType {
name := 'Integer'

};
15: elementType :=

object PrimitiveType {
name := 'Integer'

}.oclAsType(EObject);
16: }
17:);
18: res.referredVariable.initExpression :=

 self.referredVariable.initExpression.map reduce().
 oclAsType(OCLExpression);

19: }
20: endif;
21: //..
22: }
23: }

Figure 5. VarInitExp mixer

other hand, for predicates that depend on model elements,
the position of elements are used for lookup. Due to this
distinction, the generated residual code look different as
one is direct addressing, while the other uses Compute
expressions. They, nonetheless, have similar semantics. This
case is exemplar for partially evaluating dynamic collections
that can grow as a result of adding more elements. For the
case of summation, the result of summation is cached along
with the index of the last elements up to which the sum had
been calculated. The residual code simply adds this value
and the sum of the elements in the collection from the cached
index to the end.

01: modeltype BOOK uses 'http://book/1.0';
02: modeltype LIB uses 'http://lib/1.0';
03: transformation Book2Lib(in bm : BOOK, out lm : LIB);
04: configuration property root : OrderedSet(Book);
05: main() {
06: root := bm rootObjects()[Root]06: root := bm.rootObjects()[Root]
07: ->selectOne(true).allBooks;
08: root->location->map createLib();
09:}
10: mapping String::createLib() : Library {
11: init {{
12 var ownedBooks := root->select(b|b.location = self);
13: }
14: population {
15: object result : Library {
16: name := self;
17 i17: nbBooks := ownedBooks->size();
18: pubs := ownedBooks->map Book2Pub();
19: }
20: }
21:}
22: mapping Book::Book2Pub() : Publication {22: mapping Book::Book2Pub() : Publication {
23: init {
24: var samebooks := root->xselect(b|b.name =
25: self.name)>asOrderedSet();
26: }
27: title := self.name + '_' + _
28: samebooks->indexOf(self).toString() +
29: "_of_" + samebooks->size().toString();
30: type := PubKind::Book;
31: nbPages := self.chapters->nbPages->sum();
32:}

Figure 6. BooksToLibrary Transformation in QVT-OM

A. Illustrative Example

Figure 7 depicts two example metamodels. The left meta-
model, BOOK, declares two classes: Chapter and Book
where the instances of the latter comprise those of the
former. The metamodel on the right denotes the domain of
libraries with Publication and Library and the composition
association between them. Figure 6 lists a transformation
in QVT-OM that transforms an instance of the BOOK
metamodel to an instance of the LIB metamodel. An instance
of a Library is created for all the books that share the same

567

Figure 7. LIB and BOOK Metamodels

location values (defined in createLib, line 10). Each Book
in the source model maps to a Publication whose type is
marked as PubType::Book (defined in Book2Pub), and
placed in an instance of Library that corresponds to its loca-
tion. Line 17 calculates the number of books in each library
by inquiring the size() of the collection ownedBooks, i.e.,
books that share the same location.

Figure 8. Instance of the Book Model

The two metamodels, albeit conceptually similar, have
distinct semantic variations that have to be translated dur-
ing transformation. In particular, attribute nbPages in the
BOOK domain belongs to the Chapter class, whereas
each instance of Publication in the LIB domain denotes
its total number of constituting pages as an attribute. The
transformation rule in line 31 of Figure 6 handles the trans-
lation between these two different semantics by aggregating
the nbPages attribute of all the Chapter instances for
each Book, into those of their corresponding Publication
elements. Figure 8 illustrates an instance of the BOOK meta-
model. It incorporates two books in two different locations
each of which comprising two chapters. Figure 9 shows the
result of the BooksToLibrary transformation applied on this
instance of the BOOK metamodel.

Our choice of case-study and running scenario, albeit
simple, is not simplistic, as it captures the essence of what
makes the partial evaluation of imperative model transfor-
mations interesting. On the one hand, MOF and OCL (and
likewise EMF) are designed to provide a generic notation for
the specification of models. QVT transformations, insofar as
operating on MOF or EMF compliant instances, are agnostic
to the semantics of what is being specified, and as such,

Figure 9. Result of the transformation

the difference between our pedagogical metamodels and a
real-world metamodel can very well be only lexical (i.e.,
one can replace Book with JavaClass and Chapter with
JavaMethod to obtain a representation of a very common
UML model for Java, often used as a standard example in the
research literature to showcase various model transformation
technologies). On the other hand, the presented transforma-
tion exemplifies a particular class of model transformations,
expression of which require an elaborate transformation
language (e.g., QVT-OM). For example, the folding oper-
ation chapters->nbPages->sum() used in the exam-
ple transformation is a catamorphism–i.e., a function that
collapses a structure into a singular value, thereby loses
information. Information losing transformations cannot be
expressed in many commonplace transformation frameworks
(e.g., most declarative ones) as they primarily denote isomor-
phism relations between the corresponding parts of source
and target models. Making such transformations incremental
using relational languages is straightforward. Another source
of complexity in the presented transformation is engender-
ing target objects according to an attribute value (i.e., the
location attribute diffuses Library objects in the target).

B. Application of Partial Evaluation

The transformation presented in Section IV-A exemplifies
some of the common characteristics of model transforma-
tions specified in such hybrid languages as QVT-OM. In this
language, primarily due to its OCL heritage, several transfor-
mation rules operate on collections of model elements that
are selected based on context-dependent criteria. The set of
input elements in the source model is divided into a set of
FIXED elements whose values and relationships are known
and will not change, and variable elements, labeled as VAR.
Such information about model elements are annotated in the
source metamodel, as Figure 10 depicts.

Figure 10. Annotations for static analysis

568

This particular annotation labels the Book class as
FIXED, which indicates that neither any new instances of
this class will be added, nor will any of the existing ones be
removed from the input model. In contrast, the chapters
composition link is labeled as VAR to declare that the
future iterations of this model will have new instances of
Chapter (For simplicity, we only consider addition here).
All attributes of classes have FIXED annotations which
means their values are invariant.

In the partial evaluation of BooksToLib, since Book
is annotated with FIXED label, lines 12, 17, 24 and 27
of Figure 6 can be completely evaluated using static data
and cached subsequently. The partial evaluator puts the
specialized mapping rule depicted in Figure 11 in lieu of
the original main. Static caches are declared as configuration
properties so as to make them globally visible (line 01-07),
and are populated inside the residual main mapping (line
10, 14 and 19). The one created for variable ownedbooks
is indexed by string literals (since it is yielded by a select
expression that depends on a string value). In contrast, the
cache for samebooks is indexed by the position of each
book in the root of the containment hierarchy of the source
model.

01: configuration property root : OrderedSet(Book);
02: configuration property __samebooks_inds :
03: OrderedSet(Tuple(i : Integer, l : OrderedSet(Integer)));
04: configuration property __ownedBooks_inds :
05: OrderedSet(Tuple(s : String, l : OrderedSet(Integer)));
06: configuration property __nbPages_eval :
07: OrderedSet(Tuple(ind:Integer ev:Integer last:Integer));07: OrderedSet(Tuple(ind:Integer,ev:Integer,last:Integer));
08:
09: main() {
10: __ownedBooks_inds := OrderedSet {
11: Tuple{s='DanaPorterLib', l=OrderedSet{1}},
12: Tuple{s='DavisCenterLib', l=OrderedSet{2}}
13: };13: };
14: __samebooks_inds := OrderedSet {
15: Tuple{i=1, l=OrderedSet{1}},
16: Tuple{i=2, l=OrderedSet{2}}
17: };
18:
19: nbPages eval := OrderedSet{__ _
20: Tuple{ind=1,ev=70,last=2},
21: Tuple{ind=2,ev=110,last=2}
22: };
23: root := bm.rootObjects()[Root]->selectOne(r|true).allBooks;
24: root->location->map createLib();
}

Figure 11. Partially Evaluated Main

The result of partial evaluation of the createLib mapping
is presented in Figure 12. The computed expression (line 03)
is generated for looking up the value of the select expression
used on the right hand side of ownedBooks, as explained in
the previous section. Here, there is another computation that
can potentially be statically determined, namely nbBooks,
originally evaluated in line 17 of Figure 6. Our framework
however does not statically evaluate it, as it depends on a
collection that is statically cached, namely, ownedBooks.
Because our QVT implementation maintains the sizes of
collections internally, it can readily be obtained at runtime.

Some of the operations are not entirely computable during
partial evaluation. However, using proper semantics for
collections, some segments of the collections upon which

01: mapping String::createLib() : Library {
02: init {
03: var ownedBooks := compute(bs : OrderedSet(Book)
04: = OrderedSet{}) {
05: __ownedBooks_inds->
06: selectOne(t|t.s=self).l->forEach(i) {
07: bs : bs >append(root >at(i));07: bs := bs->append(root->at(i));
08: }
09: };
10: }
11: population {
12: object result : Library {
13: name := self;13: name : self;
14: nbBooks := ownedBooks->size();
15: pubs := ownedBooks->map Book2Pub();
16: }
17: }
18: }

Figure 12. Specialized createLib

such operations are performed can be partitioned into static
and dynamic segments. Consequently, the computations that
pertain to the static segment can be partially evaluated and
aggregated with residual code that operates on the rest of
the collection at runtime. An example of such operations
is the calculation of Publication::nbPages by summing
Chapter::nbPages for all the chapters of each individual
book, as denoted in line 15 of Figure 6. The VAR annotation
on the chapters association entails that the value of the
Chapter::nbPages attribute depends on chapters that will
be added later on. Nevertheless, by specializing this transfor-
mation for addition of input elements, the partial evaluator
can infer the result for the existing chapters. This is shown
in Figure 13.

01: mapping Book::Book2Pub() : Publication {
02: init {
03: var __self_index = root->indexOf(self);
04: var __self_samebooks := __samebooks_inds->at(__self_index).l;
05: var __nbPages_tup := __nbPages_eval->at(__self_index);
06: var __nbPages_new := 0;
07: }07: }
08: title := self.name + '_' +
09: __self_samebooks->indexOf(__self_index).toString() +
10: "_of_" + __self_samebooks->size().toString();
11: type := PubKind::Book;
12: var i := __nbPages_tup.last + 1;
13: while (i <= self.chapters->size()) {13: while (i < self.chapters >size()) {
14: __nbPages_new :=__nbPages_new+self.chapters->at(i).nbPages;
15: i := i + 1;
16: };
17: nbPages := __nbPages_tup.ev + __nbPages_new;
18:}

Figure 13. Specialized Book2Pub

V. EXPERIMENTS AND DISCUSSION

In this section, we present and discuss the results of
experiments we have conducted utilizing the proposed partial
evaluation framework. We have used the same transforma-
tion, i.e., BookToLibrary described in the previous section
over a range of models of various sizes. Our experiments
were performed on a Windows XP (Service pack 3) based
PC featuring Intel CoreTM2 CPU clocked at 2.1Ghz, 2GB
of physical memory, running Eclipse M2M project’s QVT
Operational Mapping implementation on top of Eclipse 3.5.

569

Our first set of experiments involved applying the trans-
formation on models progressively growing in the number of
elements, and thus in model size. Figure 14 illustrates how
the performance of the original transformation compares to
the one of its specialized version. The results indicate that
the difference is negligible for small input models. This has
to do with I/O being the dominant factor during the trans-
formation of these models, which is comparable for both
transformations. However, as we apply partial evaluation
on larger models where the processing is the most time-
consuming part and the I/O effect is amortized (i.e., models
with more than 100 elements), the performance advantage
of partial evaluation becomes noticeable. The detailed values
of this experiment are reported in Table I.

The input models were generated by a QVT transfor-
mation. The reported elements are the ones for which the
BookToLibrary transformation was partially evaluated. In
this set of experiments, we consider the change to be the
addition of just one chapter to the first book of the first
library. The original transformation requires to transform all
other non-affected elements, whereas the partially evaluated
one exploits its static cache to expedite the reconciliation
of the source and target models. Although at first this
minimal size of change for empirical analysis can be called
into question, it is in fact representative of a common
practical scenario. Developers often have to manipulate bits
and pieces of very large models, and no matter how small
the change, the full re-transformation of these models may
become untractable for practical purposes. In fact, this is the
standard approach taken in most existing modeling tools. In
this regard, partial evaluation provides a viable solution for
such transformation scenarios.

Table I
THE RESULTS OF THE FIRST SET OF EXPERIMENTS.

NT NL NB NC TB2L TmixB2L

3 1 1 1 0.12ms 0.11ms
12 1 1 10 0.12ms 0.11ms
111 1 10 10 0.27ms 0.25ms

1111 1 100 10 135.6ms 1.75ms
11011 1 1000 10 10602ms 47ms

NT : total elements
NL: no. of Lib
NB : no. of Book per Lib
NC : no. of Chapter per Book
TB2L: Exec. time of BookToLibrary
TmixB2L: Exec. time of mixBookToLibrary

In the second set of our conducted experiments, we
applied a fixed input model to both transformations, each
time instructing the partial evaluator to use a fraction of
input for specializing the transformation. This is in effect
as same as having the rest of the elements added on the
second execution of the transformation. This experiment
aims to assess whether specializing more expressions inside

10

100

1000

10000

100000

xe
cu

ti
on

 T
im

e
(m

s)

Original Program

Partially Evaluated Program

L i h i A

0.1

1

10

100

1000

10000

100000

1 10 100 1000 10000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of Fixed Elements

Original Program

Partially Evaluated Program

Logarithmic Axes

Figure 14. Execution time of the original and specialized transformation
for growing input sizes

the program leads to better performance of the specialized
program 1. In particular, in this set of experiments we
focused on the summation of nbPages in the program (line
31 and line 17 of Figure 6 and Figure 13, respectively)
which was reduced by the specializer. The multiple-valued
variables were completely cached for each invocation of
the transformation. The results of these experiments are
projected in Figure 15. We triggered the transformation
with a model comprised of 10 libraries, 100 books and 10
chapters, the transformation of which took 10703ms2 by the
original BookToLibrary transformation. We then varied the
percentage of input elements used as FIXED and calculated
the time of execution of the transformation specialized for
those model elements. As expected, the more input elements
were being involved in the partial evaluation, the fewer
dynamic computations was need to be performed during
re-execution, and thus, the transformation took less time.
We started from treating all VAR elements (i.e., instances
of Chapter) as dynamic (they can be considered as new
elements added after the initial transformation), and reduced
this by 10% in each step, which resulted in more reduction
of transformation time. The full partial evaluation performs
more than twice as fast as having no partial evaluation.

VI. CONCLUSION

In this paper, we discussed a methodology for leveraging
the concept of partial evaluation for the purpose of increas-
ing the performance of iterative and repeated applications of
transformations, especially when these are applied on com-
plex interdependent models. As a case study, we presented a
partially evaluated residue of a QVT-OM transformation, and
consequently demonstrated how transformation programs

1It should be observed that, although this proposition may appear
intuitively obviously, it need not be generally true as for certain cases the
overhead of parsing and interpreting residual expressions and static caches
may outweigh any performance gained from avoiding the computation of
expressions they replace. The experiment falsifies this possibility for the
presented example

2The reason for being so slow is that line 12 in createLib executes in
O(N2

B) in the original transformation

570

400

600

800

1000

1200

1400

1600

1800

Ex
ec

ti
on

 T
im

e
(m

s)

Partially Evaluated Program

Original Program

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

Ex
ec

ti
on

 T
im

e
(m

s)

Percentage of Specialized Input of 10000 Total Elements

Partially Evaluated Program

Original Program

Figure 15. Execution time of the original and specialized transformation
based on the utilization of input elements for partial evaluation

and computations can be simplified. This simplification
of rules and programs by replacing expressions with pre-
evaluated static data is, in effect, similar to transformations
that are inherently incremental. Our experiments indicated
a significant reduction in the re-transformation time as the
percentage of utilized input model elements increases.

Our partial evaluator prototype requires the reification
of OCL and QVT expressions at specialization time. This
reification is not supported by the current implementations
of QVT-OM, therefore substantial effort was exerted to
bootstrap a QVT “self”-interpreter in QVT itself, so as to
evaluate the intermediate results. The specialization part then
uses this evaluator to transform the AST. The infrastructure
needed for making this work (e.g., QVT self-interpretation
or pretty printer) supports a comprehensive subset of the
language (which has a copious grammar as it incorporates
the entire OCL meta-model as well). Various specialization
strategies for different AST nodes can be plugged into this
core then. As far as partial evaluation is concerned, we only
focused on what we thought was unique to QVT and was
novel in are approach. More specifically, the static mem-
oization of intermediate results of ImperativeIterateExpr
and IterateExpr in the form of dictionaries which operate
on collection-based constructs such as xselect, select, collect
and various other set operations are handled. There exists a
large class of well-known partial evaluation methodologies
that are more specific to general purpose programming
languages (e.g., constant propagation, call unfolding) that we
skipped in our first implementation but plan to incorporate
later. In summary, two major aspects that make QVT-OM
unique in this respect is a) having collection operators as
first class entities and b) being, in a sense, homoiconic (like
the Lisp family of languages), that is, the ability to treat
QVT transformations as input models. Our goal has been to
showcase the combined power of these two. Thus, a natural
extension would be broadening its scope of support for the
rest of the language. This is not a trivial task though, as

adding support for more constructs of the language requires
to assure compatibility with the existing ones used for
specialization. Our partial evaluation framework is both for
and in the QVT Operational Mappings language. This is
by design: so as to allow for self- applicability, which,
according to Futamura projections [5], facilitates a multitude
of potential applications which we intend to explore as future
work.

This work was supported by IBM and Natural Sciences
and Engineering Research Council of Canada and was
conducted in collaboration with IBM Center for Advanced
Studies (CAS) at the IBM Toronto Laboratory.

REFERENCES

[1] M. S. Ager, O. Danvy, and H. K. Rohde. Fast partial
evaluation of pattern matching in strings. In In Proceedings
of PEPM’03, pages 3–9, New York, NY, USA, 2003. ACM.

[2] ATL. Specification of the ATL Virtual Machine version 0.1.
LINA and INRIA, Nantes, France, 2005.

[3] C. Consel and O. Danvy. Tutorial notes on partial evaluation.
In POPL ’93: Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
pages 493–501, New York, NY, USA, 1993. ACM.

[4] K. Czarnecki and S. Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621
– 45, 2006/07/.

[5] Y. Futamura. Parital evaluation of computation process - an
approach to a compiler-compiler. Systems, Computers and
Controls, 2(5):45–50, 1971.

[6] H. Giese and R. Wagner. Incremental model synchronization
with triple graph grammars. In Proc. of the 9th Interna-
tional Conference on Model Driven Engineering Languages
and Systems (MoDELS’06), pages 543–557. Springer Verlag,
2006.

[7] J. Greenyer and E. Kindler. Reconciling TGGs with QVT.
In Model Driven Engineering Languages and Systems (MoD-
ELS07), LNCS, pages 16–30. Springer Verlag, Nashville, TN,
Oct. 2007.

[8] D. Hearnden, M. Lawley, and K. Raymond. Incremental
model transformation for the evolution of model-driven sys-
tems. In Proc. of the 9th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’06),
volume 4199 NCS, pages 321 – 335, Genova, Italy, 2006.

[9] S. Johann and A. Egyed. Instant and incremental transfor-
mation of models. Automated Software Engineering, 2004.
Proceedings. 19th International Conference on, pages 362–
365, Sept. 2004.

[10] N. D. Jones. An introduction to partial evaluation. ACM
Comput. Surv., 28(3):480–503, 1996.

[11] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial evaluation
and automatic program generation. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1993.

571

[12] J. L. Lawall. Faster fourier transforms via automatic program
specialization. In Partial Evaluation - Practice and Theory,
DIKU 1998 International Summer School, pages 338–355,
London, UK, 1999. Springer-Verlag.

[13] M. Lawley and K. Raymond. Implementing a practical
declarative logic-based model transformation engine. In SAC
’07: Proceedings of the 2007 ACM symposium on Applied
computing, pages 971–977, New York, NY, USA, 2007.
ACM.

[14] OMG. MOF QVT final adopted specification, 2008. Object
Management Group document ptc/07-07-08.

[15] J. G. Park and M.-S. Park. Using indexed data structures
for program specialization. In In Proceedings of ASIA-PEPM
’02, pages 61–69, New York, NY, USA, 2002. ACM.

[16] A. Schürr. Specification of graph translators with triple graph
grammars. In 20th Internation Workshop of Graph Theoretic
Concepts in Computer Science, WG’94, volume 903 of LNCS,
pages 151–163, Herrsching, Germany, June 1994.

[17] R. S. Sundaresh. Building incremental programs using partial
evaluation. In In Proceedings of PEPM’91, pages 83–93, New
York, NY, USA, 1991. ACM.

[18] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei.
Towards automatic model synchronization from model trans-
formations. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software
engineering, pages 164–173, New York, NY, USA, 2007.
ACM.

572

