
Identification of REST-like Resources from Legacy Service Descriptions

Michael Athanasopoulos Kostas Kontogiannis
School of Electrical and Computer Engineering

National Technical University of Athens
Athens, Greece

athanm@softlab.ntua.gr

Abstract— Service-oriented systems mainly follow two
principles for accessing data and invoking back end
applications: Remote Procedure Calls and Message-
Orientation. However, a number of researchers and
practitioners have criticized these paradigms as too complex
and rigid. Instead, Representational State Transfer (REST)
architectural style has lately gained significant attention as an
alternative means for accessing services and data. RESTful
HTTP systems depend on Uniform Resource Identifiers (URIs)
to uniquely identify and denote data and services as
“resources”. In this paper, we discuss a technique to analyze
the descriptions of legacy data and services in order first, to
model their roles and relationships and second, to use the
discovered dependencies for extracting Unique Resource
Identifiers and the available HTTP methods, so that these
legacy service elements and data can be accessed using
lightweight requests.

Keywords- Service-Oriented Systems, REST, Migration,
Software Architecture

I. INTRODUCTION
In today’s corporate environments large software

applications are built as a collection of components that
provide and consume services and data, utilizing a variety of
diverse service description, communication and invocation
protocols. However, the technical complexity and structural
diversity of these protocols have been identified as primary
stumbling blocks for the ease of development and
widespread adoption of such service-oriented systems. In
order to overcome these shortcomings a lot of interest is
currently being concentrated on software engineering
methods and tools related to the development of applications
that conform to the REST [1] architectural style. RESTful
services allow for significant simplifications and flexibility
regards to development, deployment and invocation of web
services. Also, REST as the architectural style of the Web,
when used in application integration may bring
improvements: in scalability through statelessness, in
performance through caching, in long-term compatibility and
in evolveability through content types that can either evolve
independently or new ones can be added without dropping or
reducing support for existing ones. Being able to expose
existing legacy functionality through RESTful interfaces
would allow for significant reuse benefits of well-tested
value-proven systems into a variety of contexts that arise
from current business needs. In this context, in order to

achieve the exposure of services and data which were
previously hidden behind Web Service endpoints to the
global namespace of Web, an important step forward is to
introduce techniques for modeling their relationships and
analyzing their dependencies with the intention first of being
able to identify them via Uniform Resource Identifiers and
second identifying their available manipulation actions (i.e.
POST, PUT, GET, DELETE).

In this paper, we propose a model-driven engineering
approach to allow for the identification of REST-like
resources using as input legacy service descriptions. More
specifically, standard legacy service signatures described in
an Interface Description Language (IDL) such as WSDL are
represented in a MOF compliant model referred to as the
Signature Model and legacy data are represented using a
corresponding Data Model. Consequently, model
transformation techniques are applied to create a service and
data dependency graph that captures the semantic and
structural dependencies among these elements. Such a
dependency graph is then refined in order to disambiguate
probable dependency conflicts and analyzed to generate
equivalence classes of Uniform Resource Identifiers (URIs)
that can be used to access the legacy data and services in a
RESTful manner.

Accessing legacy services and data in a RESTful manner

has significant advantages. First, it allows for new
applications to be built by utilizing widgets in a mashup
fashion. Second, it provides a framework whereby Internet
users can compose their own Internet space which is defined
as a collection of resources that can be used to feed, filter,
compose, disseminate and reference information, data, and
services to users according their profile, context, and mode
of operation. Third, the convergence of a RESTful and SOA
type of programming model creates opportunities for new
service architectures and SOA programming models, where
service components can be accessed through multiple
bindings (e.g. both Atom and SOAP), according to the
context they are invoked and used on.

This paper is organized as follows. Section 2 is

discussing related work. Section 3 is presenting the modeling
of legacy elements. Section 4 is presenting the dependency
analysis process over the legacy service and data elements
and the formation of Uniform Resource Identifiers for

2010 17th Working Conference on Reverse Engineering

1095-1350/10 $26.00 © 2010 IEEE

DOI 10.1109/WCRE.2010.31

215

accessing and manipulating these elements. Section 5
outlines results obtained from the analysis of the Open
Travel Alliance (OTA) schema and services standard.
Section 6 presents a discussion of the emerging issues in this
area and concludes the paper.

II. RELATED WORK
An approach on formalizing RESTful web service

descriptions so that automated composition techniques can
be performed is discussed in [2]. Authors introduce a
classification of three types of RESTful web services
namely: a) Type I (Resource Set Service) which refer to
collections of domain resources (e.g. a set of Orders), b)
Type II (Individual Resource Service) which refer to
individual domain resources and can be used to denote
instance level resources (e.g. an actual Order that can be
reached through some ID), and c) Type III (Transitional
Service) which refer to services that participate in some form
of transition or transformation of other resources’ states.

The significant diversifications in the web services

domain as regards to (design, development and description)
technologies, protocols and architectural paradigms,
highlight the need of defining and using a more abstract
mechanism of service description and processing which
would provide invariant semantic models that are “immune”
to rapid technological swifts. Motivated by that, researchers
in [3] introduce a service abstraction model which allows for
a more lightweight way to describe web services and is more
flexible with handling technological diversifications.

Finally, in [4] the authors present a model-driven process

for gradually migrating from a set of functional service
requirements to a resource-centric design of web services
while employing model transformations.

III. MODELING LEGACY COMPONENTS
The first step to exposing existing legacy functionality as

a collection of RESTful resources, is to denote service
descriptions of legacy components into a common model
based on service signatures, domain data model schemas,
and a classification UML profiling process over the type of
operations and the types of domain data elements.

A. Signature Model
The Signature Model is a MOF model, depicted as a class

diagram with the extension of a profile extracted from the
classification of service’s operations and their parameters.
The classification process for each element of the Signature
Model is discussed in the following section. The Signature
Model stems from the following steps that are repeated for
every operation in a service description specification:

• For each element of the signature (operation, input

and output types) a class is created.
• Operations are connected to their input and output

parameters with associations annotated with the role

Figure 1. ATM operations' Signature Model

of the parameter as IN, OUT, or IN/OUT
parameters.

• The classification profile that is discussed in the
following section is then applied to the model and
stereotypes are assigned to the model classes.

• Finally, for every parameter stereotyped as
Container Element that is not part of a respective
Container, a class stereotyped as Container is
created as well as a containment association between
them.

As an example consider the signatures of several

operations derived from an ATM simulation system [6]. In
this example, an ATM operation that was used to generate
part of the Signature model depicted in Figure 1 is
<makeTransaction, IN:PIN, CardNumber, Session,
OUT:Transaction>. After applying the mapping rules
described above for eight operations, the complete Signature
Model is presented in Figure 1.

B. Signature Model Element Classification
In the proposed approach, the classification process is

based on heuristics which mostly depend on how rich the
descriptions of the services and of the domain model are. We
have been experimenting with several heuristics but at least
for now, we regard the process as semi-automatic, meaning
that human involvement may be demanded in order to guide
the classification steps and review or adapt the results.

As mentioned above, the classification process is used to

define a profile which will be later applied on the MOF
classes of the Signature Model to yield the final profiled
Signature Model. The classification types we consider for
operations are Constructor, Destructor, Accessor, Mutator,
Query, Investigator and, Service. Similarly, the classification
types we consider for parameters are Container Element,
Container and, Atomic/Transient Data.

Through the classification process, parameters are
categorized into exactly one class and operations are

216

categorized into at least one class. Operations that are
mapped into exactly one class are called pure (e.g. an
operation classified only as a Constructor), while operations
mapped into two or more classes are called complex (e.g. an
operation classified as a Constructor and also as a Service).
As implied by the above, an operation may have one or more
stereotypes assigned to it and a parameter must have exactly
one.

Finally, in the case of complex Constructor operations
that have more than one output parameters, their associations
with these parameters are further characterized either as
creation (when the parameter is constructed and returned by
the operation) or, retrieval (when the parameter value is
retrieved or computed by the operation).

IV. IDENTIFICATION OF SERVICE AND DATA RESOURCES
Once the Signature Model is extracted from the available

legacy components’ descriptions and the classification
process is applied, we proceed by performing an analysis
over the elements contained in the Signature Model in order
to investigate potential resources and resource hierarchies
that will guide the Resource identification process, forming
the URIs and the appropriate HTTP methods to be used with.
The identification process has three steps, a) the selection of
potential resources; b) the creation of signature dependency
graphs and; c) the identification of a resource model for the
formation of URIs and their corresponding actions.

A. Potential Resources
Potential Resources constitute a subset of the Signature

Model’s elements, upon which the dependency analysis is
performed. Potential Resources are extracted employing
heuristics over Signature Model’s annotations and structural
properties. In our current approach we consider as Potential
Resources all the data elements stereotyped as Container and
Container Element and, all the operations stereotyped as
Service. Other heuristics may reflect domain or model
specific constraints and assumptions, design decisions, as
well as business-oriented rules or conventions.

B. Construction of Signature Dependency Graphs
The first step in the proposed dependency analysis

process is constructing and refining a directed graph called
Signature Dependency Graph (SiDG) which will be
transformed for the purposes of URI formation into a
directed acyclic graph (DAG). The SiDG is constructed
automatically taking into account only a subset of the
Signature Model's elements and their associations. Using this
information the SiDG is formed through the following
mapping rules:

• Single Container signature model classes as well as

pairs of Container and Container Element classes
are mapped to SiDG vertices.

• Service operations are also mapped to SiDG
vertices.

• For every pure Constructor, signature model class
directed edges are created emanating from every
vertex that corresponds to an OUT parameter

Figure 2. SiDG example

associated with the Constructor and terminating to
all the vertices that correspond to IN parameters
associated with this Constructor. When the
parameters are stereotyped as Container, the
endpoints of the created edges are labeled with a star
denoting multiplicity.

• For every complex Constructor, edges are created in
the same fashion as above with the difference that
only OUT associations that are labeled as
construction, are considered.

• For every Service signature model class, directed
edges are created emanating from the respective
vertex and terminating to all the vertices that
correspond to the IN parameters associated with the
operation, following the same rule as above as
regards edge endpoints.

Figure 2 illustrates the SiDG that is constructed from the

Signature Model depicted in Figure 1.

C. Vertex identification / contraction
After constructing the SiDG, a refinement process may

have to take place in which all the strongly connected
subgraphs are contracted into higher level vertices. Finally, a
directed acyclic graph which is a condensation of the SiDG
(referred to as SiDGc) is constructed and will be used to
form the URIs (or the URI equivalence classes). The
contracted vertices are considered as composite Potential
Resources and are identified and exposed through URIs in
the same way as the rest of the resources. We use Gabow’s
algorithm [5] (also known as Cheriyan-Mehlhorn algorithm)
for the identification of strongly connected components.
Figure 3 shows a sample SiDG on the left and its
condensation on the right. Potential Resources E, F, and G
are contracted to EFG and the resulting graph is directed and
acyclic.

D. Service Resource Model
Since a SiGDc is a DAG, the vertices (i.e. simple and

composite Potential Resources) are partially ordered. In case
that there is a Hamiltonian path in SiGDc the resource
hierarchy for the whole application is intuitive and the URI
formation for each potential resource is reduced to just
traversing the path from that resource to the ''sink'' of the
graph and appending the resource names in the reverse order.
However, usually the case is that there is more than one path
from each Potential Resource to ''sink'' resources and this is

217

Figure 3. Vertex Contraction example.

when URI equivalence classes are introduced. A URI
equivalence class is represented with the “||” operator which
denotes all permutations between the associated resources.
For example, the http://.../A||B URI for the resources A and
B, will be an equivalence class for http://.../A/B or
http://.../B/A URIs.

E. Transitional Resources
As mentioned above, Potential Resources include

operations stereotyped as Service. These resources would be
classified as Type III category of services presented in [2]
and we refer to as Transitional Resources. Such a resource is
accessed through a POST request to its URI. In order to
demonstrate how the URI is formed we take as an example
the ATM send operation. Figure 2 illustrates the SiDG
corresponding to the ATM example which is already a DAG,
meaning that we may skip the vertex contraction step since
the resulting SiDGc will be exactly the same.

Consequently, the URI equivalence class for the send
operation is formed by the subgraph depicted in Figure 4 and
is translated into textual form as:

http://.../((sessions/{sessionid}/transaction
s/{transactionid})||(accounts/{accountid}))/m
essages/{messageid}/send

where “||” stands for parallel operator. Also, when an edge
endpoint is labeled with a star (*) only the collection
resource name corresponding to that vertex appears on the
URI pattern. Topological sorting of the above example leads
to the following two URIs:

http://.../sessions/{sessionid}/transactions/
{transactionid}/accounts/{accountid}/messages
/{messageid}/send

and,

http://.../accounts/{accountid}/sessions/{ses
sionid}/transactions/{transactionid}/messages
/{messageid}/send

F. Data Resources
Data Resources contained in the SiDG (or SiDGc if

necessary) can be also identified through URI equivalence
classes in exactly the same way that was described for

Figure 4. send SiDG subgraph.

Transitional Resources. For example, the SiDG subgraph for
the Message vertex is the same with the one in Figure 4 after
removing the send operation vertex and the edge emanating
from it. Consequently, individual Message resources are
identified through the following URI pattern which is also
the URI pattern for the respective resource collection after
removing the last resource ID segment.

http://.../((sessions/{sessionid}/transaction
s/{transactionid})||(accounts/{accountid}))/m
essages/{messageid}

The ways in which these resources can be manipulated

(i.e. the available HTTP methods) is of course a matter of the
available functionality, and in particular of the pure legacy
operations. In this context, we introduce five rules to map
legacy service operation invocations “genuinely” to RESTful
HTTP requests over identified data resources.

Creation. An operation stereotyped as Constructor that

creates a Container Element is mapped to a POST request to
the URI of the corresponding Container.

Retrieval. An operation stereotyped as Accessor that
retrieves the contents of a Container or a Container Element
is mapped to a GET request to the corresponding URI.

Modification. An operation stereotyped as Mutator that
modifies the contents of a Container or a Container Element
is mapped to a PUT request to the corresponding URI.

Removal. An operation stereotyped as Destructor that
removes a Container or a Container Element is mapped to a
DELETE request to its corresponding URI.

View. An operation stereotyped as Query that returns
data which is a part or a view of a Container or a Container
Element, based on query parameters is mapped to a GET
request to the corresponding URI followed by the query
parameters as a sequence of property-value pairs separated
by a delimiter character.

V. EXAMPLE: OPENTRAVEL AIR SERVICES
As an application example, we consider the schema from

Open Travel Alliance (OTA) [7]. For brevity, we constrained
our analysis to air traveling related messages. The resulting
Signature Model (a segment of which is depicted in Figure
5) contains the following operations: OTAAirBook,
OTAAirBookModify, OTAAirRules, OTAAirCheckIn,

218

Figure 5. OTA Air Services Signature Model

segment.

OTAAirAvail. The operations OTAAirBook and
OTAAirBookModify are pure operations stereotyped as
Constructor and as Mutator respectively and they are both
related to the resource AirReservation which is stereotyped
as Container Element. OTAAirRules is stereotyped as Query
and returns a collection of FareRuleResponseInfo resources.
The rest of the operations are complex. Specifically
OTAAirCheckIn is a complex Constructor of
AirCheckInType resources and OTAAirAvail is stereotyped
both as Service and as Query. Once the Signature Model is
constructed and its elements are stereotyped we proceed by
executing the Signature Dependency Graph extraction rules.
The SiDG generated by the Signature Model is presented in
Figure 6 while some of the resulting URIs include:

http://.../(POS/{POSID})||(AirItinerary/{AirI
tineraryID})/AirReservations/ (POST operation)

http://.../(POS/{POSID})||(AirItinerary/{AirI
tineraryID})/AirReservations/{AirReservation}
/ (PUT Operation)

http://.../FareRuleResponseInfo/?RuleReqInfo=
{parameter values} (GET Operation)

http://.../(POS/{POSID})||(PassengerInfo/{Pas
sengerInfoID})||(FlightInfo/{FlightInfoID})/O
TAAirCheckIn (POST operation) and,

http://.../(POS/{POSID})||OriginalDestination
Information/OTAAirAvail (POST operation)

Figure 6. OTA Air Services SiDG.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we presented a model-driven approach in
identifying REST-like Resources from legacy service
descriptions. Using the information contained in the
descriptions of the available functionality (in the form of
WSDL or Message schema specifications) we proposed a
way to model service operations signatures into a MOF
model called Signature Model. The Signature Model
captures structural and semantic information about its
elements and their associations. This model is then used to
extract directed graphs depicting dependencies between a
subset of signature model elements characterized as potential
resources. Based on that dependency analysis, URI
equivalence classes are extracted for every resource and
topological sorting is proposed as a way of forming unique
identifiers. Furthermore, we introduced a set of rules that can
be used to map existing operations to truly RESTful HTTP
requests when specific patterns are present in the Signature
Model. Finally, issues such as the usage of appropriate
MIME types that would carry “what goes into the HTTP
interactions message payloads”, how these mappings are
done, and how this information could be used to improve the
URI formation process, is subject of future work.

REFERENCES
[1] R. Fielding. “Architectural Styles and The Design of Network-based

Software Architectures”. PhD thesis, University of California, Irvine
(2000)

[2] H. Zhao, P. Doshi, "Towards Automated RESTful Web Service
Composition," IEEE International Conference on Web Services,
2009, pp.189-196

[3] Li, L. and Chou, W. 2009. “Infoset for Service Abstraction and
Lightweight Message Processing”. In Proc. of the 2009 IEEE
international Conference on Web Services (July 06 - 10, 2009). pp.
703-710.

[4] M. Laitkorpi, P. Selonen, P., and T. Systa. “Towards a Model-Driven
Process for Designing ReSTful Web Services”. In Proc. of the 2009
IEEE international Conference on Web Services, pp. 173-180.

[5] Gabow, H.N. (2003), "Searching (Ch 10.1)", in Gross, J. L.; Yellen,
J., Discrete Math. and its Applications: Handbook of Graph Theory,
25, CRC Press, pp. 953–984 .

[6] ATM Simulation,
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/

[7] OpenTravel Alliance, http://www.opentravel.org/

219

