
Pattern and Policy Driven Log Analysis for Software Monitoring

Ali Razavi Kostas Kontogiannis

Unversity of Waterloo
Department of Electrical &

Computer Engineering
Waterloo, Canada

arazavi@swen.uwaterloo.ca

National Technical University of Athens
Department of Electrical &

Computer Engineering
Athens, Greece

kkontog@softlab.ntua.gr

Abstract

The component-based nature of large industrial
software systems that consist of a number of diverse
collaborating applications, pose significant challenges
with respect to system maintenance, monitoring,
auditing, and diagnosing. In this context, a monitoring
and diagnostic system interprets log data to recognize
patterns of significant events that conform to specific
Threat Models. Threat Models have been used by the
software industry for analyzing and documenting a
system’s risks in order to understand a system’s threat
profile. In this paper, we propose a framework
whereby patterns of significant events are represented
as expressions of a specialized monitoring language
that are used to annotate specific threat models. An
approximate matching technique that is based on the
Viterbi algorithm is then used to identify whether
system generated events, fit the given patterns. The
technique has been applied and evaluated considering
threat models and monitoring policies in logs that have
been obtained from multi-user MS-Windows© based
systems.

1. Introduction

Large industrial software systems often consist of
several collaborating applications that may be even
deployed over local/wide-area networks. When these
systems operate, events that are emitted from different
and diverse sources are logged and stored for further
analysis. Analyzing large log files is an overwhelming
and complex task, especially when logged data pertain
to event entries originating from different sources and
applications. In this context, an interesting challenge is

to devise techniques to define and denote specific
patterns and consequently to design and implement
analyzers that harvest the event logs in order to
confirm whether these patterns appear in the event logs
or not. For our purposes a log entry is a record of an
event. Logged events can be classified as atomic or
composite. An atomic event represents the occurrence
of an action or a state, e.g., someone initiates the login
procedure (action), or it is 12noon (state). A composite
event consists of several atomic events matching a
given pattern.

In this paper, we propose a monitoring framework that
takes as input a threat model for a software system and
produces a set of threat policy patterns that are denoted
in specialized event policy language and ultimately as
a Markov event state model. An approximate pattern
matching technique can then be used to identify
whether the events logged confirm or deny a specific
policy pattern for a given threat model.

This paper is organized as follows. In Section 2 we
discuss related work in the area of system monitoring
and diagnostics. Section 3 discusses threat models and
introduces a monitoring policy event language. Section
4 presents the proposed pattern matching technique and
Section 5 concludes the paper and presents some
pointers for future work.

2. Related Work

In the area of log analysis, Zhang in [1], proposes an
analysis technique for log files with applications to
both unit- and system-level testing. Similarly, Vaarandi
in [2] presents a novel clustering algorithm for log file
data sets which detects frequent patterns from log files,

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI

108

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.81

108

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.81

108

and builds log profiles that identify anomalous logs.
Denning presents a real-time intrusion detection
system [3]. The system is based on the analysis of
system usage to identify abnormal patterns of usage. In
[4] an intrusion detection system is presented. The
system is based on hidden Markov models that denote
the normal operation of a system. An analysis
technique detects intrusions by noting significant
deviations from the model. The major difference with
our work is that we model threats instead of normal
behavior and then we attempt to verify that these threat
patterns occur. Shieh et al in [5] present a pattern
oriented intrusion detection system. The system is
based on models that represent various intrusion
patterns caused by the unintended use of programs and
data. In [6] threats are modeled by Petri-nets and threat
mitigations are modeled by Petri-net based aspects. In
[7] an intrusion detection system that is based on the
analysis of temporal orderings of system calls using
deterministic finite automata.

3. From Threat Models to Event Patterns

3.1 Threat Models

Threat modeling is a process of analyzing and
documenting a system’s security risks. Threat models
are usually encoded as Threat Trees. An example
Threat Tree for a web application is depicted in Figure
1. Threat Trees are labeled ordered directed AND-OR
trees. The parent node denotes a threat that is modeled
and the children denote either sub-threats or events that
must happen for the parent threat to be perceived as
active and occurring. An introduction to Threat
Modeling and Threat Trees can be found on [8].

Gain Privileged
Access to

Workstation

Gain Regular
Access

Elevate
Privilege

Create
Backdoor

Hide Attack
Traces

Identify a UserID Attempt to Login

Guess Password Brute force trial

Exploit insecure
resources

Buffer
Overflow

Create
Privileged
Accounts

Change
Group

membership

Remove
Logs

Logoff

and

and andor or

or

Gain Privileged
Access to

Workstation

Gain Regular
Access

Elevate
Privilege

Create
Backdoor

Hide Attack
Traces

Identify a UserID Attempt to Login

Guess Password Brute force trial

Exploit insecure
resources

Buffer
Overflow

Create
Privileged
Accounts

Change
Group

membership

Remove
Logs

Logoff

and

and andor or

or

Figure 1. A Threat Tree modeling actions required
to take control of a server.

Furthermore, threat models utilize threat trees to
specify what is required for a specific threat to be
realized. Any information in the order of events and
the alternative forms of realization are usually
presented in an informal format in the threat profile.
While this serves its purpose as a security requirement
document, it is not adequate for monitoring the
behavior of a runtime system.
In this paper we propose the utilization of an abstract
language which can be used to denote event patterns
that complement threat models. This language provides
the means to annotate threat trees with additional
information pertaining to specific constraints and
properties of events that can be associated with each
node in the threat tree such as the event type, event
ordering and, event timing. In this respect, we provide
an initial guideline for the interpretation of logged
events within also the context of a specific threat
model or threat tree. The proposed event language is
composed of atomic events, composite events and
operators. The grammar of the proposed event
language specified in EBNF is as follows:

Script := Statement*
Statement := Assignment | EventTypeDecl
EventTypeDecl := “EventType” Identifier ObservationList
ObservationList := “(“ Observation(“,” Observation)* “}”
Observation := Identifier “:” <PROB_LITERAL>
Expression := SeqExpr | TimedExpr | ConcExpr |
ChoiceExpr | UnaryExpr | PrimaryExpr
SeqExpr := Expression “;” Expression
TimedExpr := Expression “After” <TIME_LITERAL> |
Expression “@” <TIME_LITERAL>
ConcExpr := Expression “||” Expression
ChoiceExpr := Expression “+” Expression
Assignment := PrimaryExpr “:=” Expression
UnaryExpr := “!” UnaryExr | PrimaryExpr
PrimaryExpr := [Probability] (WildCardExpr | Identifier |
“(“ Expression “)”) [Process]
Probability := <PROB_LITERAL> “.” Identifier
WildCardExpr := [Identifier] ((“*”|”?”) [Identifier])+
Process := “From” Identifier
Identifier := <ID >

3.3 Observations and Atomic Events

An observation is a phenomenon that can be captured
and recorded by the logging system. In other words,
these are the concrete, application specific and
observable events in the system.
An atomic event represents the occurrence of a single
action, such as a login event, a function call or a file
open operation. Each atomic event expression has a
number of attributes such as the name of the event, the
type of the event, the id of the process that initiated the

109109109

event, the timestamp of the event and a user-defined
probability of occurrence.

3.4 Augmenting Threat Models with Event
Patterns

Threat models are usually represented as Threat trees.
Threat trees are ordered, labeled, directed AND-OR
trees. The root of the tree represents the threat being
modeled. The children of a node represent threats that
must be achieved in order for the threat represented by
the parent node to be achieved as well. An example of
the mapping from Threat Trees to event expressions is
illustrated in Figure 2.

Figure 2. Example mapping Threat Trees to event
expressions

More specifically, suppose we have a threat tree as in
Figure 2(b) which denotes that in order for Threat G1
to be materialized we need to have Threats C1 AND C2
be materialized. Threat trees on their own do not
specify whether C1 has to happen before C2 or whether
C1 can happen in parallel with C2. In this respect we
provide to G1 the simple annotation, in this example, of
C1 || C2. In this respect, Event(X) provides a class or a
collection of low level logged events that are
associated with X. Mappings form high level Threat
Tree node types to low level log events and their
frequencies are modeled a priori by the system
administrator or the application vendor. Probabilities

and frequencies can be updated as more information on
the system’s operational profile is gathered.

3.5 Mapping Event Expressions to Transition
Models

Event expressions provide a textual representation of a
Threat Model in a form where the threats and the
actions are now represented as events that can be
logged by the system’s logging utilities. For example a
Failed Login action that is considered in the Threat
Tree, is represented now by a specific observable event
that can be logged. Mapping event expressions to
monitoring policy transition models can be defined in
an iterative manner by considering the transformation
rules that are illustrated in Figure 3. Once the transition
model has been created the pattern matching process
aims to identify the optimal assignment between the
event transition model state model and the sequence of
events logged by the system’s logging utilities. The
section below discusses in more detail the matching
process.

4. Pattern Matching for Monitoring Policy

In this section we present the matching process that is
used to identify important patterns in large log files.
The proposed matching process contains the following
steps:
1. System logs entries es1, es2, .. esk are parsed so that

an AST Tes is created and event log description
entries Es1, Es2, … Esk are obtained as nodes of
such an AST. An event log description entry Esi, is
an abstraction entity representing the actual event
log entry esi.

2. The event expression pattern ep1 op ep2 op epn is
parsed and a corresponding AST, Tep is created.

3. A transformation program based on the process
discussed in the previous section, generates from
Tep a state automaton leading to a composed Hiden
Markov Model called the Abstract Event Pattern
Model (AEPM) in which each state is a monitoring
policy event expression statement and each
transition link corresponds to the operators that
can be inferred from the structure of the Tep.

4. The Viterbi algorithm [9], [10] is then used to
compute the probability that the composed HMM
generates an event log description sequence
(conversely matches an event sequence) E = Es1,
Es2, .. Esk.

The matching algorithm, terminates when all possible
matches to reach a final state have been tried. The
maximum length sequence of matched log entries es1,

 OR

AND

C1 C2

C1 C2

G1

 G1
C1;C2

AND
C1 C2

 G1

C1 || C2

(a) Event(N1) = Event(C1) + Event(C2) +
 (Event(C1) || Event(C2))

 (c) Event(N1) = Event(C1) ; Event(C2)

 (b) Event(N1) = Event(C1) || Event(C2)

110110110

es2, .. esk that has the maximum matching probability
among the sequences of log entries of the same length
taken from the candidate sequences, is chosen as the
result of the matching process. The Viterbi algorithm
guarantees that all possible paths to a final state have
been examined and that the best path, the one that
maximizes the overall matching probability, is chosen.

Figure 3. Mapping event expressions to transition
Models

 5. Conclusion

In this paper we presented a pattern-matching
framework that can be used to identify such significant
patterns in large event logs. The system is based on the
idea that Threat Trees are annotated by abstract event
patterns using an event expression language. The event
expression is transformed into a state based Markov
model. The Viterbi algorithm is then used to calculate
the optimal alignment between the patterns and a
sequence of logged events.
The benefit of the proposed system is on the flexibility
it provides to the auditor or the software engineer to
denote complex patterns that may relate to specific
Threat Models for a given application. Future work for

the proposed system includes the investigation of pre-
processing techniques to limit the size and the
complexity of the matching process. This work has
been performed in collaboration with CA Labs and is
supported by the Natural Sciences and Engineering
Research Council of Canada.

References

[1] J.H. Andrews, Y. Zhang, “Broad-spectrum studies of log
file analysis”, In Proceedings of 22nd International
Conference on Software Engineering (ICSE 2000), Limerick,
Ireland, 2000, pp. 105 – 114.

[2] R. Vaarandi, “A data clustering algorithm for mining
patterns from event logs”, In Proceedings of 3rd IEEE
Workshop on IP Operations and Management (IPOM03),
Kansas City, US., 2003, pp. 119 – 126.

 [3] D. Denning, “An Intrusion Detection Model”, In IEEE
Transactions on Software Engineering, vol.13 No.2, Feb.
1987, pp. 222-232.

[4] S. Cho, “Incorporating Soft Computing Techniques Into
Probabilistic Intrusion Detection System”, In IEEE
Transactions on Systems, Man and Cybernetics vol. 32, No.
2, May 2002, pp. 154 – 160.

[5] S.P. Shieh , V. Gligor, “On Pattern-Oriented Model for
Intrusion Detection”, In IEEE Transactions on Knowledge
and Data Engineering, vol. 9, No. 4, Jul. 1997, pp. 661 – 667.

[6] D. Xu, K.E. Nygard, “Threat-Driven Modeling and
Verification of Secure Software Using Aspect-Oriented Petri
Nets”. In IEEE Transactions on Software Engineering, vol.
32, No. 4, Apr. 2006, pp. 265 – 278

[7] A. Kosoresow, S. Hofmeyr, “Intrusion Detection via
System Call Traces”, IEEE Software, vol. 14, No. 5, Sep.
1997, pp. 35-42.

[8] F. Swiderski, W. Snyder, “Threat Modeling”, Microsoft
Press, Redmond, Washington, 2004.

[9] A. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm”, IEEE
Transactions on Information Theory, vol. 13, No. 2, Apr.
1967, pp. 260–269.

[10] G. Forney, “The Viterbi algorithm”, Proceedings of the
IEEE, vol. 61, No. 3, Mar. 1973, pp. 268–278.

Event(C1)att1=val1,
 att2 = val2 ..
 attn = valn)

 N(Event(C1))
[att1 …]

Event (S) =Event(C1);Event(C2)

 N(Event(C1)) N(Event(C2))

 N(Event(C1)) S N(*) N(Event(C2))

Event (S) = Event(C1);*Event(C2)

 S

 N(Event((C1))

Event(S) = 0.6.Event(C1)+ 0.4.Event(C2)

 N(Event(C1))

 S

 N(Event(C2)) N(Event(C1))

N(Event(C2))

Event(S) = Event(C1 || Event(C2)

0.6

0.4

0.5

0.5

 N(Event((C2))

111111111

