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Abstract 

The component-based nature of large industrial 
software systems that consist of a number of diverse 
collaborating applications, pose significant challenges 
with respect to system maintenance, monitoring, 
auditing, and diagnosing. In this context, a monitoring 
and diagnostic system interprets log data to recognize 
patterns of significant events that conform to specific 
Threat Models. Threat Models have been used by the 
software industry for analyzing and documenting a 
system’s risks in order to understand a system’s threat 
profile. In this paper, we propose a framework 
whereby patterns of significant events are represented 
as expressions of a specialized monitoring language 
that are used to annotate specific threat models. An 
approximate matching technique that is based on the 
Viterbi algorithm is then used to identify whether 
system generated events, fit the given patterns.  The 
technique has been applied and evaluated considering 
threat models and monitoring policies in logs that have 
been obtained from multi-user MS-Windows© based 
systems.  

 

1. Introduction 
 
Large industrial software systems often consist of 
several collaborating applications that may be even 
deployed over local/wide-area networks. When these 
systems operate, events that are emitted from different 
and diverse sources are logged and stored for further 
analysis. Analyzing large log files is an overwhelming 
and complex task, especially when logged data pertain 
to event entries originating from different sources and 
applications. In this context, an interesting challenge is 

to devise techniques to define and denote specific 
patterns and consequently to design and implement 
analyzers that harvest the event logs in order to 
confirm whether these patterns appear in the event logs 
or not. For our purposes a log entry is a record of an 
event. Logged events can be classified as atomic or 
composite. An atomic event represents the occurrence 
of an action or a state, e.g., someone initiates the login 
procedure (action), or it is 12noon (state). A composite 
event consists of several atomic events matching a 
given pattern.  

In this paper, we propose a monitoring framework that 
takes as input a threat model for a software system and  
produces a set of threat policy patterns that are denoted 
in specialized event policy language and ultimately as 
a Markov event state model. An approximate pattern 
matching technique can then be used to identify 
whether the events logged confirm or deny a specific 
policy pattern for a given threat model. 

This paper is organized as follows. In Section 2 we 
discuss related work in the area of system monitoring 
and diagnostics. Section 3 discusses threat models and 
introduces a monitoring policy event language. Section 
4 presents the proposed pattern matching technique and 
Section 5 concludes the paper and presents some 
pointers for future work.  

 

2. Related Work  

 

In the area of log analysis, Zhang in [1], proposes an 
analysis technique for log files with applications to 
both unit- and system-level testing. Similarly, Vaarandi 
in [2] presents a novel clustering algorithm for log file 
data sets which detects frequent patterns from log files, 
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and builds log profiles that identify anomalous logs. 
Denning presents a real-time intrusion detection 
system [3]. The system is based on the analysis of 
system usage to identify abnormal patterns of usage. In 
[4] an intrusion detection system is presented. The 
system is based on hidden Markov models that denote 
the normal operation of a system. An analysis 
technique detects intrusions by noting significant 
deviations from the model. The major difference with 
our work is that we model threats instead of normal 
behavior and then we attempt to verify that these threat 
patterns occur. Shieh et al in [5] present a pattern 
oriented intrusion detection system. The system is 
based on models that represent various intrusion 
patterns caused by the unintended use of programs and 
data. In [6] threats are modeled by Petri-nets and threat 
mitigations are modeled by Petri-net based aspects. In 
[7] an intrusion detection system that is based on the 
analysis of temporal orderings of system calls using 
deterministic finite automata.  

 

3. From Threat Models to Event Patterns 
 
3.1 Threat Models 
 
Threat modeling is a process of analyzing and 
documenting a system’s security risks. Threat models 
are usually encoded as Threat Trees. An example 
Threat Tree for a web application is depicted in Figure 
1. Threat Trees are labeled ordered directed AND-OR 
trees. The parent node denotes a threat that is modeled 
and the children denote either sub-threats or events that 
must happen for the parent threat to be perceived as 
active and occurring. An introduction to Threat 
Modeling and Threat Trees can be found on [8].  
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Figure 1. A Threat Tree modeling actions required 
to take control of a server. 

 

Furthermore, threat models utilize threat trees to 
specify what is required for a specific threat to be 
realized. Any information in the order of events and 
the alternative forms of realization are usually 
presented in an informal format in the threat profile. 
While this serves its purpose as a security requirement 
document, it is not adequate for monitoring the 
behavior of a runtime system. 
In this paper we propose the utilization of an abstract 
language which can be used to denote event patterns 
that complement threat models. This language provides 
the means to annotate threat trees with additional 
information pertaining to specific constraints and 
properties of events that can be associated with each 
node in the threat tree such as the event type, event 
ordering and, event timing. In this respect, we provide 
an initial guideline for the interpretation of logged 
events within also the context of a specific threat 
model or threat tree. The proposed event language is 
composed of atomic events, composite events and 
operators. The grammar of the proposed event 
language specified in EBNF is as follows: 
 
Script :=  Statement* 
Statement := Assignment | EventTypeDecl 
EventTypeDecl := “EventType” Identifier ObservationList 
ObservationList := “(“ Observation( “,” Observation)* “}” 
Observation := Identifier “:” <PROB_LITERAL> 
Expression := SeqExpr | TimedExpr | ConcExpr | 
ChoiceExpr | UnaryExpr | PrimaryExpr  
SeqExpr := Expression “;” Expression 
TimedExpr := Expression “After” <TIME_LITERAL> | 
Expression “@” <TIME_LITERAL> 
ConcExpr   :=  Expression “||”  Expression 
ChoiceExpr := Expression “+” Expression 
Assignment := PrimaryExpr “:=” Expression 
UnaryExpr := “!” UnaryExr | PrimaryExpr 
PrimaryExpr := [Probability] (WildCardExpr | Identifier | 
“(“ Expression “)” ) [ Process] 
Probability := <PROB_LITERAL> “.” Identifier 
WildCardExpr := [Identifier] ((“*”|”?”) [Identifier])+ 
Process := “From” Identifier 
Identifier := <ID > 
 
3.3 Observations and Atomic Events 
 
An observation is a phenomenon that can be captured 
and recorded by the logging system. In other words, 
these are the concrete, application specific and 
observable events in the system.  
An atomic event represents the occurrence of a single 
action, such as a login event, a function call or a file 
open operation. Each atomic event expression has a 
number of attributes such as the name of the event, the 
type of the event, the id of the process that initiated the 
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event, the timestamp of the event and a user-defined 
probability of occurrence.  
 
3.4 Augmenting Threat Models with Event 
Patterns 
 
Threat models are usually represented as Threat trees. 
Threat trees are ordered, labeled, directed AND-OR 
trees. The root of the tree represents the threat being 
modeled. The children of a node represent threats that 
must be achieved in order for the threat represented by 
the parent node to be achieved as well. An example of 
the mapping from Threat Trees to event expressions is 
illustrated in Figure 2.  
 
 

 
Figure 2. Example mapping Threat Trees to event 
expressions 
 
More specifically, suppose we have a threat tree as in 
Figure 2(b) which denotes that in order for Threat G1 
to be materialized we need to have Threats C1 AND C2 
be materialized. Threat trees on their own do not 
specify whether C1 has to happen before C2 or whether 
C1 can happen in parallel with C2. In this respect we 
provide to G1 the simple annotation, in this example, of 
C1 || C2.  In this respect, Event(X) provides a class or a 
collection of low level logged events that are 
associated with X. Mappings form high level Threat 
Tree node types to low level log events and their 
frequencies are modeled a priori by the system 
administrator or the application vendor.  Probabilities 

and frequencies can be updated as more information on 
the system’s operational profile is gathered. 
 
3.5  Mapping Event Expressions to Transition 
Models 
 
Event expressions provide a textual representation of a 
Threat Model in a form where the threats and the 
actions are now represented as events that can be 
logged by the system’s logging utilities. For example a 
Failed Login action that is considered in the Threat 
Tree, is represented now by a specific observable event 
that can be logged. Mapping event expressions to 
monitoring policy transition models can be defined in 
an iterative manner by considering the transformation 
rules that are illustrated in Figure 3. Once the transition 
model has been created the pattern matching process 
aims to identify the optimal assignment between the 
event transition model state model and the sequence of 
events logged by the system’s logging utilities. The 
section below discusses in more detail the matching 
process.  
 

4. Pattern Matching for Monitoring Policy 
 
In this section we present the matching process that is 
used to identify important patterns in large log files. 
The proposed matching process contains the following 
steps: 
1. System logs entries es1, es2, .. esk are parsed so that 

an AST Tes is created and event log description 
entries Es1, Es2, … Esk are obtained as nodes of 
such an AST. An event log description entry Esi, is 
an abstraction entity representing the actual event 
log entry esi.  

2. The event expression pattern ep1 op ep2 op epn is 
parsed and a corresponding AST, Tep is created. 

3. A transformation program based on the process 
discussed in the previous section, generates from 
Tep a state automaton leading to a composed Hiden 
Markov Model called the Abstract Event Pattern 
Model (AEPM) in which each state is a monitoring 
policy event expression statement and each 
transition link corresponds to the operators that 
can be inferred from the structure of the Tep. 

4. The Viterbi algorithm [9], [10] is then used to 
compute the probability that the composed HMM 
generates an event log description sequence 
(conversely matches an event sequence) E = Es1, 
Es2, .. Esk.  

The matching algorithm, terminates when all possible 
matches to reach a final state have been tried. The 
maximum length sequence of matched log entries es1, 
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es2, .. esk that has the maximum matching probability 
among the sequences of log entries of the same length 
taken from the candidate sequences, is chosen as the 
result of the matching process. The Viterbi algorithm 
guarantees that all possible paths to a final state have 
been examined and that the best path, the one that 
maximizes the overall matching probability, is chosen. 
 

   

 
Figure 3. Mapping event expressions to transition 
Models 
 

 5. Conclusion 
 

In this paper we presented a pattern-matching 
framework that can be used to identify such significant 
patterns in large event logs. The system is based on the 
idea that Threat Trees are annotated by abstract event 
patterns using an event expression language. The event 
expression is transformed into a state based Markov 
model. The Viterbi algorithm is then used to calculate 
the optimal alignment between the patterns and a 
sequence of logged events.   
The benefit of the proposed system is on the flexibility 
it provides to the auditor or the software engineer to 
denote complex patterns that may relate to specific 
Threat Models for a given application. Future work for 

the proposed system includes the investigation of pre-
processing techniques to limit the size and the 
complexity of the matching process. This work has 
been performed in collaboration with CA Labs and is 
supported by the Natural Sciences and Engineering 
Research Council of Canada. 
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