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Abstract. The life cycle activities of industrial software systems are
often complex, and encompass a variety of tasks. Such tasks are sup-
ported by integrated environments (IDEs) that allow for project data
to be collected and analyzed. To date, most such analytics techniques
are based on quantitative models to assess project features such as ef-
fort, cost and quality. In this paper, we propose a project data analytics
framework where first, analytics objectives are represented as goal mod-
els with conditional contributions; second, goal models are transformed
to rules that yield a Markov Logic Network (MLN) and third, goal mod-
els are assessed by an MLN probabilistic reasoner. This approach has
been applied with promising results to a sizeable collection of software
project data obtained by ISBSG repository, and can yield results even
with incomplete or partial data.

Keywords: Software engineering, software analytics, conditional con-
tributions, probabilistic reasoning, multi-view goal models.

1 Introduction

The life cycle of large industrial software systems encompasses a number of
diverse and complex tasks. The software engineering community has responded
to this challenge by proposing environments that utilize software repositories
to store a large collection of software artifacts and project related information.
This information can be mined to provide the springboard for what is referred to
as software development analytics, an area that has started receiving significant
attention over the past year [1],[2].

However, current software mining techniques and tools are mostly used for
knowledge discovery, and for the identification of relationships across repository
artifacts [3], failing to take into account the project’s contextual information
that leads to different views of analysis and mining objectives. In this paper, we
propose an approach where software project data analytics is taking the form of
specifying, and consequently verifying or denying, specific hypotheses or goals
regarding the risks related to cost, effort, and quality of the software system
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being built or maintained. We consider the approach as being qualitative, even
though it utilizes quantitative data for its training purposes, because it is based
on goal models, instead of a numerical formula to compute its results. Existing
cost, effort, and quality prediction models that are based mostly on numerical
formulas fail to take into account experience captured from past similar projects,
or to formally represent the view an organization and its stakeholders have on
how risk should be defined and evaluated within the particular software devel-
opment context. The intended use of the proposed framework is first, to allow
stakeholders to define their own views on how risk related to cost, effort, and
quality is to be modeled and evaluated; second, allow for past cases to be used
for training the risk assessment models allowing thus for customization within
an organization and third, allow for risk assessment to commence even when not
all input values are known.

More specifically, we present a software project data analytics framework that
is based first, on goal models for denoting analysis objectives and second, on
Markov Logic that allows for reasoning even in the presence of incomplete or
partial information. Furthermore, a) we enrich goal models with the concept of
conditional contributions among goals initially introduced in [4], b) we illustrate
the association of conditional contributions with agent roles and commitments
which are originally presented in [5], and c) we provide the necessary transforma-
tion rules that allow for the generation of logic formulas and the corresponding
Markov Logic Networks (MLNs) from such goal models. The produced MLNs
can then be trained by past project data so that, probabilistic reasoning weights
can be computed for the logic formulas. Consequently, current project reposi-
tory data can be utilized, in order to produce analysis results as to whether these
project objectives can be satisfied within a certain level of confidence.

This paper is organized as follows. Section 2 provides a research baseline by
summarizing key concepts in the areas of Goal Models and Markov Logic Net-
works, and also describes the details of our approach. Then, section 3 discusses
the concept of conditional contributions as it is used in this paper, the transfor-
mation of Goal Models to Markov Logic rules, and the training process. Section
4 presents a case study that uses goal models pertaining to quality, effort and
cost. Finally, section 5 presents related work and Section 6 concludes the paper
and provides pointers for future research.

2 Related Research Fundamentals

2.1 Goals and Commitments

AND/OR Goal Trees. The Goal Tree model is based on the concept of top-
down decomposition of goals into subgoals and has been successfully used for
specifying functional and non-functional requirements of software systems [5].

More specifically, a goal can be divided into sub-goals which are represented as
its children. Borrowing the notation used in [5], we denote an AND-decomposition
or an OR-decomposition of goal α to a set G of sub-goals as:

G
AND−−−→ α and G

OR−−→ α (1)
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Fig. 1. An example goal model for “Low Effort” with conditional contributions

Except from AND/OR-decompositions, two goals can by connected by a con-
tribution arc. In a more descriptive manner, a goal may potentially contribute
to other goals by four different contribution arcs [6], namely, ++S, −−S, ++D,
and −−D, which according to [5] can be expressed in mathematical logic as
follows:

++S(g, g′) ⇒ g → g′ ++D(g, g′) ⇒ ¬g → ¬g′
−−S(g, g′) ⇒ g → ¬g′ −−D(g, g′) ⇒ ¬g → g′ (2)

It is important to note that for this paper we allow for conditional contribu-
tions, i.e. contributions that can be used only when a specific condition holds.
Conditional contributions were initially introduced in [4] as part of a general
contextual requirements modeling framework. In addition to that, contributions
can be considered with a degree of probability which is called weight, and is
computed via an appropriate training process. We believe that the existence of
weights for contributions, and hence for the corresponding logical formulas, cap-
tures best the dichotomy between contribution of one goal to another and the
strict notion of an implication in a FOL formula.

An example goal model 1 that contains only one root node, namely “Low
Effort”, and which is further AND-decomposed to sub-goals, is illustrated in Fig.
1. As it can be seen, in addition to the ++S contribution from node-i (“Support
by Technical People”) to node-c (“High Level of Experience and Knowledge”)
which applies under any case, there are also three conditional contributions. Two
of them, −−D(f, a) and −−S(h, a), apply only when the policy chosen is one
that demands strict schedule compliance, while the third one, −−S(g, a), applies
only when a disciplined requirements management policy is adopted.

Agents, Capabilities and Commitments. Goal trees can also be used in
multi-agent environments, where each agent owns a set of goal trees and aims

1 This example is based on the analysis presented in [7].
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Fig. 2. The proposed framework for software project data analytics

at satisfying the root goals. An extension of this formulation is proposed by
Chopra et al. in [5], where the authors are aiming to model the communication
protocol between agents with different goals. The novelty of this approach is the
introduction of three new concepts, namely Capability, Commitment and Role.

In a more descriptive manner, each agent has a set of Capabilities. Those
are the goals that the agent can achieve without the need to interact with other
agents. There are some goals however, the satisfaction of which depends on other
agents. This kind of dependency is described by the notion of Commitment. More
specifically, a Commitment is a tuple:

Com(Debtor, Creditor, Antecedent, Consequent)

which means that the Debtor is committed to the Creditor for the Consequent
if the Antecedent holds. The Debtor and the Creditor in the previous tuple are
Roles that an agent can adopt, while the Consequent and the Antecedent, in the
cases used hereinafter, are goals of the model.

2.2 Markov Logic Networks

Richardson and Domingos [8] have introduced MLNs as a way to combine the
benefits of both first-order logic (FOL) and probabilistic graphical models in a
single representation. More specifically, an MLN constitutes a knowledge base
(KB) of predicates and ground atoms represented as nodes in a graph. By assign-
ing truth values to each possible ground atom, possible worlds can be constructed
in which the KB may be true with a degree of probability. In MLNs, a world
may hold with a non-zero probability, even if some of its formulas are violated.
The degree of probability for the world to hold, depends inversely on the number
of formulas violated and also, on how strong the constraints introduced by the
violated formulas, are. The latter is signified by a real number related to each
formula in the KB, which represents the weight assigned to this formula.

For this paper, we have used the Alchemy tool as a statistical relational learn-
ing and probabilistic logic inference engine [9]. By providing a set of MLN rules
along with the set of grounded atoms, Alchemy tool constructs the appropriate
Markov network which can then be used either for training or for inference.
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2.3 Process Outline

The outline of the proposed framework process is depicted in Fig. 2. Initially,
the analysis objectives are defined and represented as a goal model with condi-
tional contributions which is called Project Analytics Goal (PAG) model. This is
constructed by using an appropriate visual notation, the semantics of which are
described in section 3.1. The presence of conditional contributions allows for the
existence of multiple variations of the same model, with each variation capturing
a particular model viewpoint. In a similar manner as in [10], conditional contri-
butions provide the flexibility of manually turning on or off specific contributions
according to the need of the analysis. For example, for the PAG model illustrated
in Fig. 1, the two conditional contributions −−D(f, a) and −−S(h, a) may or
may not be used in the analysis, and that depends on whether policy PSS is true
or not. Consequently, the given PAG model is transformed to a set of rules that
form a knowledge base for a Markov Logic Network (MLN). The resulting MLN
can then be trained by past project data so that, probabilistic reasoning weights
can be computed for rules that correspond to contributions. It is important to
note, that during the training process we assume that all contributions, whether
they are conditional or not, are active. This assumption is based on the fact
that the degree of probability some objective contributes to an other objective
is specific, and it does not depend on the viewpoint of the model.

The training process described so far, produces an updated PAG model in
which weights, i.e. degrees of probabilities, have been assigned to each contribu-
tion. The role those weights play in the analysis can be pointed out through the
following example. Consider the case of node-c in Fig. 1 which is the target of a
++S contribution from node-i. The existence of this contribution implies that in
case node-i is true, node-c can be satisfied with some degree of probability, even
if its child nodes, namely node-d and node-e are false. As soon as the training
process completes, and the updated PAG model has been generated, we create
the set of MLN rules that are going to be used by the inference engine. How-
ever, the presence of conditional contributions implies that we have to generate
a different set of rules for each possible combination of policies, i.e. for each
potential viewpoint. To avoid this, and in order to produce a unified set of rules,
we consider an Agent Model, which uses the notion of commitments as described
in [11]. The equivalence between conditional contributions and commitments is
described in detail in section 3.2.

Finally, current project repository data, and the required viewpoint in terms
of active policies, are fed as input to the framework, in order to produce analysis
results as to whether the project objectives can be satisfied within a certain level
of confidence.

3 Modeling Project Analytics Goals

3.1 Policies and Conditional Contributions

Policies provide the mechanism to restrict the contributions that may be active
at any given point, reflecting thus the different viewpoints agents have on a goal
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Table 1. Equivalence between conditional contributions of a PAG model and commit-
ments in an Agent Model. CP are the PolicyAgent’s capabilities.

PAG Model Agent Model Interpretation (if p holds)

w : ns
++S−−−→
{p}

nt
Com(RP ,p,ns,n

′
t) , n

′
t ∈ CP ns contributes positively to nt

with probability ww : n′
t

++S−−−→ nt

w : ns
−−S−−−→
{p}

nt
Com(RP ,p,ns,n

′
t) , n

′
t ∈ CP ns contributes negatively to nt

with probability ww : n′
t

−−S−−−→ nt

w : ns
−−D−−−→
{p}

nt
Com(RP ,p,n

′
s,n

′
t) , n

′
t ∈ CP ns denial implies the achievement

of nt with probability wns
−−D−−−→ n′

s , w : n′
t

++S−−−→ nt

w : ns
++D−−−→
{p}

nt
Com(RP ,p,n

′
s,n

′
t) , n

′
t ∈ CP ns denial implies the denial of nt

with probability wns
−−D−−−→ n′

s , w : n′
t

−−S−−−→ nt

model given the project’s context or characteristics. Hence, policies allow for the
existence of multiple views of a Project Analytics Goal (PAG) model, where each
combination of policies yields a different viewpoint that contains a different set
of active contributions. The use of conditional contributions provides a modeling
abstraction to the Goal Models theory. More specifically, the conditional contri-
butions allow for a user to define the context in which contributions hold. Once
the context (i.e. the conditions) have been defined by the software engineer, then
only the contributions that their values evaluate to true are considered, resulting
thus to a fully unconditional Goal Model which is a “specialization” of the orig-
inal one containing the conditional contributions. The training process assigns
probabilities to the contributions that are conformant to the semantics of Goal
Models with contribution probabilities as these are defined in [12]. What follows
are the formal definitions of conditional contributions and PAG models.

Definition 1 Let T ∈ {++S,−−S,++D,−−D} be the type of a contribution.
Let also PF be the set of all possible policies for a given PAG model, and PC =

{Pc1 , · · · , Pcn} ⊂ PF . A conditional contribution from a to b, denoted as a
T−−→
PC

b,

is a contribution of type T that applies only for policies in PC .

Definition 2 A PAG model is a triplet of the form 〈G,PF , GS〉, where G is the
set of decomposition and contribution statements, PF is the set of all possible
policies and GS is the set of the conditional contributions of the model.

It is important to note that for a contribution to be conditional, PC has to be
a proper subset of PF , as otherwise it would be possible to define conditional
contribution that would apply to every view of the model. Those conditional
contributions, if they could be defined, would be degenerated into unconditional

contributions which are denoted as a
T−→ b with T being the type of the contri-

bution. For the PAG model illustrated in Fig 1, the corresponding PF , G and
GS sets are defined as follows:
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PF = {PSS , PDR} , G =

⎧
⎪⎨

⎪⎩

{b, c} AND−−−→ a

{d, e} AND−−−→ c

i
++S−−−→ c

, GS =

⎧
⎨

⎩

f
−−D−−−→
PSS

a , g
−−S−−−→
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a

h
−−S−−−→
PSS

a

When conditional contributions in GS are activated these produce a view of the
model. To accomplish this, a set of policies, we refer to as active policies set,
must be specified. This set is denoted as PA and is a subset of PF . Given a

conditional contribution in the form a
T−−→
PC

b, we say that this contribution is

active during the analysis process only if PC

⋂
PA �= ∅. For example, for the

model in Fig. 1, if PA = {PSS} the resulting view will contain all contributions
except the one applied for policy PDR, i.e. the −−S contribution from node-g
to node-a, as {PDR}

⋂
PA = ∅.

3.2 From Conditional Contributions to Commitments

In this section, we discuss the association between conditional contributions and
commitments, as the latter were originally defined in [11]. Assuming that the
training process has been completed (see section 3.3), and that for each con-
ditional contribution a weight, i.e. a degree of probability, has been calculated,
the use of commitments aims at proving the abstraction means for creating a
model that contains no conditional contributions and is still able to represent
the multiple views of the initial PAG model in a single and unified rule base.
Hence, our objective is not only to create a model that is consistent with the
general goal model theory, but also to be able to use that model for the gen-
eration of a set of MLN rules that contains all rules and predicates to be used
by any collection of policies (i.e. viewpoints) selected by the user without the
need to regenerate rules for each viewpoint. In this context, commitments pro-
vide an abstraction mechanism that is compatible with goal model theory and
are used in our approach to generate rules that act as switches to inhibit or
prohibit reasoning paths depending on the policies selected. Specifically, we in-
troduce two agents, namely the ProjectAgent and the PolicyAgent. We assign
the goal model to the ProjectAgent while the PolicyAgent is used in order to
provide certain objectives to ProjectAgent through commitments. Additionally,
given a PAG model 〈G,PF , GS〉 we create one role for each policy in PF and
we allow only ProjectAgent to adopt one or more of these roles. This, in com-
bination with one extra role, called Reasoner, denoted as RP and adopted by
the PolicyAgent, allows the definition of the required commitments. For example
for the model of Fig. 1, ProjectAgent can adopt the roles PSS and PDR. Each
combination of these adopted roles will result in the activation/deactivation of
the corresponding contributions, and this is done through commitments.

Table 1 summarises the association between conditional contributions and
commitments, where the degree of probability for each contribution, as this has
been calculated during the training process, is denoted by w. Because of space
limitations we only discuss the transformation steps and the use of commitments
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for one of the four contribution types, namely the ++D conditional contribution.
Initially, we introduce two pseudo-objectives, namely n′

s and n′
t, with the latter

being a capability of the PolicyAgent. Subsequently, we add two contributions,
one of type −−D from ns to n′

s, and an other one of type −−S from n′
t to

nt. While the former is a contribution that applies always, the latter has a
degree of probability equal to that of the corresponding conditional contribution.
Consequently, we consider the commitment Com(RP ,p,n

′
s,n

′
t). By considering

this commitment, is equivalent as of adding the rules p ∧ ns → n′
s, n

′
t → nt,

where the former acts as the “switch” to inhibit or prohibit the generation of
nt whether p holds or not. Therefore, commitments provide abstraction and
modeling means for representing a unified knowledge base. One could omit the
use of commitments and generate directly the intermediate switch rules but we
believe that the use of commitments provides a better and more abstract way
to capturing the intended policies that can be adopted by the ProjectAgent.

Finally with respect to the example above, we illustrate the equivalence be-
tween the semantics of the ++D conditional contribution, and the rules that
are produced by the use of the commitment. In particular we show that when
policy p holds, the denial of ns implies the denial of nt with probability w. Actu-
ally, if ns is false, then because of the −−D contribution n′

s becomes true. This
means that in case ProjectAgent adopts role p and because of the commitment
previously specified, PolicyAgent will provide ProjectAgent with n′

t which is one
of PolicyAgent’s capabilities. Finally, the truth of n′

t implies with probability w
that nt is false because of the −−S contribution introduced earlier. Hence, if ns

is false and ProjectAgent adopts the role p, objective nt become also false with
probability w. Thus, by substituting the initial −−D conditional contribution
with an appropriate set of Agent Model constructs, we end up with a model that
does not contain this conditional contribution but still has the same behavior as
if it was part of the model.

3.3 Rule Generation for Training and Inference

As it is illustrated in Fig. 2, the generation of the MLN rules is required both for
training and for inference. For the former, we generate the rules from the PAG
model, for which we assume that all policies hold, i.e. all conditional contribu-
tions are active. Hence, we must extract a set of first order rules from a goal
model that only contains contributions (non-conditional ones), and AND/OR-
decompositions. This can be easily done by using only one first-order logic predi-
cate, namely Satisfied(a), which means that objective a is satisfied. More specif-
ically, the contribution of the form −−S(h, a) of Fig. 1 will be translated into
the formula :

Satisfied(h) → ¬Satisfied(a) (3)

while corresponding formulas are used for the remaining contribution types.
Furthermore, AND/OR-decompositions are translated as logical conjunc-

tions/disjunctions. The AND-decomposition {d, e} AND−−−→ c of Fig. 1 for example
will be translated as :
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Satisfied(d) ∧ Satisfied(e) → Satisfied(c)

While the rules that correspond to AND/OR-decompositions are assumed to
be hard, weights must be calculated for those that correspond to contributions,
which is done through the training process.

In contrast to the previous case, the MLN rules required for inference are
extracted from the produced Agent Model, which in addition to contributions
and decompositions includes commitments and roles. For the former we define
the predicate Commit(RP ,p,a,b), which means that Com(RP ,p,a,b) exists in the
Agent model, while for the latter the UsesPolicy(p) predicate is used to denote
that PolicyAgent has adopted role p, i.e p ∈ PA. Finally, the following rule,
resolving satisfaction of an obligation through a commitment must be added to
the produced set of rules :

Commit(RP , p, a, b) ∧UsesPolicy(p) ∧ Satisfied(a) → Satisfied(b)

4 Evaluation

4.1 Software Project Analytics Goal Models

As a proof of concept we have compiled a PAG model pertaining to Product
Quality, Project Cost and Project Effort. Even though the compilation of this
model reflects an agent’s views and therefore it is subjective, we have attempted,
when drafting our own model, to take into account assertions from the related
literature as well as from existing standards. More specifically, with respect to
product quality we referred to the ISO 9126 standard. With respect to cost
and effort we have considered features (but not the actual metrics) from cost
and effort estimation tools such as COCOMOII, PRICE-S and, CHECKPOINT.
However, these goal models are not the primary focus and contribution of this
paper as they are indicative and introduced for experimentation purposes. In this
respect, a user may define his or her own models using the modeling principles
introduced in this paper. A part of the PAG model utilized for the case study is
depicted in Fig. 3. The conditional contributions in these models pertain to the
policies: Strict Adherence To Process Model Analysts Policy (depicted as PM in
Fig. 3), Strict Adherence to Coding Standards Engineering Policy (depicted as
CS), Strict Organizational Structure Management Policy (depicted as OS), Use
of High Level Language Analysts Policy (depicted as HL), and Extra Attention
to be Paid For Large or Legacy Systems Management Policy (depicted as LS).

4.2 Case Study

In this section, we present experimental results obtained by applying the pro-
posed approach to 280 different projects selected from the ISBSG [13] project
data repository using three criteria. The first criterion is that we have opted
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Fig. 3. Part of the PAG model used in the case study along with the set PF of possible
policies. Leaf nodes are depicted as rectangles.

for A Class projects meaning that, according to the ISBSG quality rating clas-
sification, the reported data is sound with nothing being identified that might
affect the integrity of the analysis. The second criterion is that we have opted
for projects that have been classified as Development Project so that we have
kept the analysis related to the same type of projects. The third criterion is
that we have selected large projects that correspond to the top 25th percentile
of projects with the highest Unadjusted Function Count as measured by the
IFPUG standard. Each project has 44 distinct features with numeric or yes/no
values. From these values we have created predicates that populated the Knowl-
edge Base as follows. Values that belong to the top 25th percentile of values were
classified as High, values that belong between the top 26th - top 75th percentile
were classified as medium and values below the top 75th percentile as low. For
example, if for a project the Normalized Work Effort attribute has a value that
belongs to the to 10th percentile of all 280 projects considered, the predicate
Satisfied(High Nomalized Work Effort) is added to the KB. For the training we
have selected 30 projects representing the projects that had more than 80% of
all their fields completed with values. In this sense, we allowed for the most
complete MLN training we could get for the given ISBSG data set. From the
remaining 250 projects we excluded the ones that had more than 60% of their
values unknown for each category resulting in a case study data set of 246, 221,
and 246 for the effort, cost, and quality respectively.

Policy Variability. Table 2 illustrates the variation of these probabilities as a
function of the number of different used policies. It is interesting to note that
when AttentionForLargeSystems policy is assumed the LowCost, HighEffort and
HighQuality goals are satisfied with probabilities 21.57%, 99.04%, and 49.57%
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Table 2. Variation of Probabilities with the allocation of policies

Policy Low Cost High Effort High Quality

AttenForLargeSystems 21.57 % 99.04 % 49.57 %

HighLevelProgLanguageUsed 99.00 % 77.69 % 50.76 %

StrictCodingStructure 19.13 % 98.99 % 87.00 %

FollowProcessModel 20.13 % 99.04 % 83.59 %

StrictOrgStructure 19.13 % 99.00 % 99.00 %
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Fig. 4. Variation of probability while the number of erroneous features increased

respectively, but when HighLevelProgLanguageUsed is assumed as a policy the
HighQuality goal probability increases, while the LowCost goal probability in-
creases and HighEffort goal probability decreases reflecting the fact that the use
of a high level language facilitates and eases development.

Stability. Experimental results indicate that the process is stable when rea-
soning commences with erroneous information. Fig. 4 illustrates the gradual
decrease of probability result values as more and more features are excluded
(negated). More specifically Fig. 4 depicts the effect of removing 0, 1, all the
way up to half of features used for reasoning. Removing (negating) more than
half of the features results into uncertain reasoning as not enough information
is available to deduce an accurate result.

Correctness. To assess the correctness of the results we consider three specific
numerical evaluation criteria (Defect Ratio, Effort Ratio and Cost Ratio, that
are indicative and fit to each goal type (product quality, effort, cost). These
are consequently normalized to Low, Medium and High values, so that we can
compare them against the obtained results by the goal models which also fall in
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the Low, Medium and High scale according to their computed probability values.
More specifically, for assessing product quality we have selected the

Defect Ratio =
Total Defects Delivered

Functional Size

where Functional Size is measured in Unadjusted Function Points using the IF-
PUG standard. Normalized defect counts with respect to functional size (not
code size) have been always associated with quality in the software engineering
literature [14]. To evaluate whether this metric was a good validator we have
run a Chi-square dependency test with four degrees of freedom (LowQuality,
MediumQuality, HighQuality, and LowDefectRatio, MediumDefectRatio, High-
Defect Ratio) and confidence level p = 0.10 for assessing whether there is
any significance of DefectRatio in Quality. Our H0 hypothesis that there is
no significant relation between Defect Ratio and Quality, was rejected with
a Chi-square value of 8.75 corresponding to a probability of 0.93. The High,
Medium, Low value classification for Defect Ratio is based on the percentile
ranking of obtained Defect Ratio values (top 33%, top 66%, and low 33% re-
spectively), while for the values of product Quality objective (as those are calcu-
lated using the framework), the High, Medium, and Low classification is based
on p > 0.75, 0.5 < p ≤ 0.75, p ≤ 0.5 values respectively. Similarly, for assessing
effort we have selected the

Effort Ratio =
Summary Effort

Functional Size

that has given a four degrees of freedom Chi-Square value of 6.91 rejecting thus
the null hypothesis with a corresponding probability of 86%. Finally for assessing
cost we have selected the

Cost Ratio =
Project Elapsed Time

Functional Size
·Median Salary

where median salary is estimated at 58,000 USD based on US national averages.
As above, values in the top 33%, top 66%, and low 33% have been classified as
High, Medium and, Low respectively. The Cost Ratio metric has given a four
degrees of freedom Chi-square value of 15.7 rejecting thus the H0 hypothesis
that there is no significant relation between Cost Ratio and the Low Cost goal.
Please note that for the evaluation of goals in the goal tree, we have not used any
feature that is also used in the three validation criteria metrics presented above.
The percentage of correct results as well as of false negatives and false positives
for all three goals (i.e. High Product Quality, Low Cost, High Effort), obtained
from the selected ISBSG projects excluding the projects used for the training
set, are illustrated in Table 3. In a more descriptive manner, the framework
predicts High Product Quality, Low Cost, and High Effort for a specific project
when the corresponding probability calculated is greater that 0.75 and it is of
medium confidence when the probability is between 0.5 and 0.75. Overall, the
conclusions drawn from the projects analysed is that after training commences,
and when input data from new projects for the purpose of evaluating Cost, Effort,
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Table 3. Percentage of correct, false positive, and false negative results

Objective Correct False Positive False Negative Projects Considered

Effort 73.6 % 11.8 % 14.6 % 246

Cost 67.9 % 14.5 % 17.6 % 221

Quality 60.6 % 11.4 % 28.0 % 246

and product Quality, the framework predicts correctly 73.6% of the times effort
related issues, 67.9% cost related issues, and 60.6% quality related issues.

5 Related Work

Overall, techniques in mining and reasoning in software repositories can be con-
sidered as falling into five main areas. The first area deals with statistical and
data mining analysis of repository data to uncover statistically significant corre-
lations or interesting trends as the software system evolves. In [15] data mining
techniques are applied to revision history repositories to uncover dependencies
between code segments that are difficult to extract with existing static and dy-
namic code analysis. In [16] Poisson modeling and generalized linear regression
statistical analysis of change management data have been proposed as a way
of predicting fault incidence in large long lived software systems. The second
area deals with NLP type of analysis and the use of topic models for search and
clustering such as Latent Semantic Indexing (LSI), Probabilistic LSI (PLSI) and
variants of the Latent Dirichlet Allocation (LDA). In [17] a comprehensive sur-
vey of topic model based techniques for mining software repositories is presented.
The survey provides a classificatory and comparative study of the different ap-
proaches found in the literature. In [18] a technique that is based on log reduction
and Markov Logic diagnostic rules is used for root cause analysis. The main dif-
ference of this approach with the approach presented in this paper is that in [18]
diagnostic rules are generated form plain AND/OR trees, while in this paper
we present a framework that utilizes commitments, roles, and contributions for
encoding Markov Logic Network rules from Goal Models. The third area deals
with the extraction of metrics to compute maintainability indices, the identifi-
cation of code cloning, and prediction of software quality. The fourth area deals
with the analysis of software repositories using social network types of analysis.
In [19] social network techniques are applied on repositories of email correspon-
dents in order to address questions related to commit activities. In [20] a social
network analysis is applied to reveal team communication patterns and assist on
supporting management activities in software development projects. The fifth
area deals with machine learning where predictions on specific software proper-
ties can be inferred by past data trends. More specifically, in [21] a technique
that uses association rule mining and the k-Nearest-Neighbor machine learning
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strategy to generate product-specific feature recommendations is presented. In
[22], the authors discuss a technique for predicting latent software bugs that uses
a machine learning classifier for determining whether a new software change is
more similar to prior buggy changes or to clean changes.

In the area of probabilistic reasoning, GeNIe/SMILE [23] is focusing on deci-
sion making, that is to identify the best solution among alternatives and calcu-
late an expected value based on a utility function and the probability associated
with this solution. The GeNIe/SMILE framework utilizes influence diagrams as
extensions of Bayesian networks to perform reasoning and assign probabilities
for each possible outcome. GeNIe/SMILE and the goal model/MLN approach
can both be considered as probabilistic reasoning methodologies. However, we
believe that the goal models/MLN approach has two major advantages over the
GeNIe/SMILE approach. First, goal models are more expressive than influence
diagram as they allow for AND/OR logical operators to be used as well as a
richer set of contributions compared to the simple influence arcs used in Ge-
NIe/SMILE, and second they allow for the existence of cycles in the network
the presence of which is a typical scenario when modeling complex interactions
between decision items supporting a goal. Finally, MLNs provide an extension of
the Bayesian networks in the sense that they combine the probabilistic reason-
ing capabilities of the Bayesian networks with expressive modeling capabilities
of first order logic [8].

In [24] a policy verification framework is proposed. The framework uses the
User Requirements Notation to model processes, and rules to denote policies. A
bottom up linear propagation algorithm is used to compute the level of compli-
ance of a parent node given key performance indicators and level of compliance
of its children. The main difference from our approach is that our approach
uses learning to calculate probabilities for each contribution link and utilizes a
probabilistic reasoning method as opposed to a linear bottom up value propa-
gation formula. Furthermore, with respect to model variability, the approach in
[24] achieves variability (i.e. goal model families) by adding explicit OR children
nodes denoting the variability conditions, while we use condition predicates on
the contribution links of the model, and commitments to achieve variability.

In [25] an extension of the Goal-oriented Requirements Language is proposed
by adding ranges of satisfaction values for each node. A satisfaction score prop-
agation technique is then used to identify how new strategies may affect basis
strategies and compute differences of satisfaction scores when alternative strate-
gies are used. The main difference from our approach is that our approach does
not focus on computing a difference in the satisfaction score between variance
of a base strategy, but rather activate alternative models based on conditions
that make contribution arcs true or false, and comments with reasoning for each
alternative model independently.

6 Conclusion

This paper focuses in the area of software development analytics and in particular
in the area of software project data analytics. The objective of this work is to
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propose a qualitative framework, in which different stakeholders may state their
goals, define how different views and roles may affect other goals and, allow for
reasoning under uncertainty or partial information. Reasoning is achieved by the
use of training a Markov Logic Network with past data and applying a Markov
Logic reasoner. In this paper, we have shown how conditional contributions relate
to roles and commitments, and we have defined the transformation from Goal
Models and conditional contributions, to first order logic rules. In addition, we
have discussed how these rules can generate a Markov Logic Network so that
probabilistic reasoning can commence. The major contributions and novelty of
this work is that it proposes a qualitative view of software analytics instead
of a metrics-based quantitative one second, allows for information-rich goals to
be defined capturing the different stakeholders views third, allows for valid and
stable results to be reached even with partial data, a situation that often arises
in the early stages of a project or on systems developed by different groups
and involving different processes. The proposed technique has been applied with
promising results to a repository of two hundred and fifty projects selected from
the ISBSG portfolio of project data, pertaining to the top 25th percentile of
the largest projects measured by their Function Points. Future work in this
area involves the compilation of goal models that relate to specific standards
and processes (e.g. CMMI, SMART, SCRUM) denoting thus specific project
management and organizational maturity views, and also the extension of the
framework by allowing the definition not only of conditional contribution, but
also of conditional decompositions and of conditional project objectives so as to
increase the expressiveness of the models used.
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