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Abstract—Problem diagnosis in large software systems is a
challenging and complex task. The sheer complexity and size
of the logged data make it often difficult for human operators
and administrators to perform problem diagnosis and root cause
analysis. A challenge in this area is to provide the necessary
means, tools, and techniques for the operators to focus their
attention to specific parts of the logged data reducing thus
the complexity of the diagnostic process. In this paper, we
propose a framework for filtering logs according to specific
analysis goals and diagnostic hypotheses set by the user or by an
automated process. More specifically, the proposed framework
uses annotated goal trees to model the constraints and the
conditions by which the functionality of a particular system
is being delivered. Next, a transformation process maps such
constraints and conditions to a collection of queries that can be
either applied to a relational database that stores the logged data
or use Latent Semantic Indexing to identify the most relevant log
entries for the given query. The results of such queries provide
a subset of the logged data that is compliant with the goal tree
and can be used by a diagnostic SAT-solver based algorithm.
Experimental results show that the filtering process can reduce
the time and complexity of the diagnosis when applied to multi-
tier heterogeneous service oriented systems.

Index Terms—Log analysis, root cause analysis, goal model,
performance, latent semantic indexing.

I. INTRODUCTION

Root cause analysis (RCA hereafter) pertains to a set of
techniques and processes that aim to discover faults that
produce an observed failure. A common approach to RCA
is to analyze log files and identify deviations from normal or
expected behavior. These deviations are then examined so that
potential causes can be identified. RCA performance is limited
by the size of the logs considered. This problem becomes more
apparent when large software systems are concerned. These
systems are comprised of many components each of which
may have different logging and monitoring mechanism so that,
the logged data may often be too many and too complex for
a human operator to analyze. In this respect, the problem
becomes to reduce the size of the logged data by filtering out
data that are not relevant to a particular diagnostic hypothesis,
and to focus the attention of the human operators to events
that may relate to root causes of an observed failure.

This paper presents a framework that helps on the analysis
of streaming log data and interprets a selected subset of
this data for the purpose of RCA and system diagnostics in
service oriented systems. This framework provides a reduced

log data set feeding into an existing root cause identification
component based on a SAT-solver algorithm [14]. More specif-
ically, the log reduction framework uses goal models that can
be extracted either from the system analysts or by reverse
engineering the source code [16]. In this paper, we propose to
annotate goal models with precondition, occurrence, and effect

predicates that can be used either to generate SQL queries to be
applied against the log data pool or can be used for identifying
related log entries by using Latent Semantic Indexing (LSI
hereafter). In this respect, when the user experiences a system
failure, the corresponding goal models and their annotations
are used to generate queries that yield reduced log data
that provide an initial focus to the human operator towards
identifying the root cause of the problem being observed.
To evaluate the proposed framework, we have applied it
to a service oriented system we have built using a set of
commercial-off-the-shelf products.

This paper is structured as follow. Section II presents
related research work. Section III provides a description of
the components and algorithms of the proposed extended
monitoring framework. Section IV describes the normalization
process applied on the natively generated log data. Details
about the two approaches taken for log reduction are described
in Section V. Section VI describes the use case scenario
used and the corresponding test environment. Section VII
describes the empirical evaluation of the framework. Section
VIII summarizes the contributions and conclusions.

II. RELATED WORK

This paper proposes a framework for log reduction and
interpretation by limiting the size of the log data that need
to be considered for verifying or denying a diagnosis in
the context of a distributed environment. To model business
processes, applications, services, etc., we use annotated goal
models that have been formalized in Giorgini et al. [4]. A
similar approach was used by [1] to monitor and ensure that
service oriented systems satisfy their requirements by using
BPEL based models annotated with logical predicates. Other
approaches for understanding and monitoring the behavior of
enterprise systems use execution trace as input and return a
summary of its main content in the form of abstract execution
events [8], or as UML sequence diagrams [5]. In the remainder
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Fig. 1. Logical architecture of the log filtering and interpretation framework.

of this section, we describe related work in the areas of RCA
and LSI.

A. Root cause analysis

In the context of software maintenance, RCA (also known
as fault localization) represents a class of techniques for the
detection and identification of the concealed fault(s) that is
(are) at the source of a system failure or a user reported
incident. Although most of the literature on RCA has been
in the area of low level communication systems; however,
the arrival of service oriented architecture has led to more
interest in developing and adopting RCA techniques in higher
layers such as business processes and software services layers.
The approaches in the literature can be classified as based
on probabilistic approaches such as Bayesian Belief Networks
[13], or based on decision trees [2] or rule sets [6] or decision
matrices [9], [10]. Some approaches rely on natively generated
low level trace information [2] others generate their own log
data using instrumentation [14] or by intercepting system calls
[17]. Hanemann proposes a hybrid reasoning approach where
the root cause of an incident is identified by first searching a
set of rules that map symptoms to root causes [6]. Yuan [17]
collects trace data and compares it to already collected sets of
trace data. Similarly, Steinder [13] analyzes the symptoms in
a system and uses Bayesian Belief Networks to model end-
to-end services in the system and compute the Most Probable
Explanation set. In [14], Wang et al. instruments the source
code of monitored applications and use the generated log data
to verify the requirements satisfaction as well as for system
diagnostics. Unlike [14] which relies on instrumenting soft-
ware systems, our approach relies on natively generated log
data which is less intrusive and thus a more practical approach
when analyzing off-the-shelf commercial products. In addition,
our approach handles diversity in log data (syntactically and
semantically) unlike other approaches such as [2] where the
data format and contents are known a priori. Similarly to [13],
our approach includes modeling the system to be monitored
before using the RCA framework; however, the preparatory
effort is less than for rule based approaches which require
building association relationships [6], [9]. Similarly to all other
approaches relying on raw log data, the diagnosis produced by
framework directly depends on the quality of the collected log
data.

B. Latent Semantic Indexing

LSI is an indexing and retrieval method to identify relation-
ships among terms and concepts in an unstructured collection
of text. LSI was first patented in 1989 by Deerwester et al.
[3]. LSI is commonly used in areas such as web retrieval
and document indexing [15] and feature identification [12].
In our work we consider each log entry as a document. In

this respect, LSI can be used for identifying those log entries
that mostly associate with a particular user query denoting a
system feature, a precondition, an occurrence or an effect of an
operation. In addition, we have introduced a distance function
to estimate the weight for fields where traditional semantic
analysis does not apply (such as timestamp).

III. LOG FILTERING AND INTERPRETATION FRAMEWORK

A. Overall Architecture

As illustrated in Figure 1, the proposed framework has four
components. The first component is log data normalization
component. It transforms streaming log data into a common
format and stores it into a centralized database table. The
second component is a log data aggregation component. It
uses a set of constraints defined in object constraint language
(OCL hereafter) to generate an equivalent set of SQL queries,
which in turn are used to extract a subset of log data from the
log database. The third component refines the data extracted
earlier by reducing the false positives using a LSI based
clustering technique. The processed log data are then fed to
a correlation component which classifies events according to
what transaction or business process instance they belong with.
The output of this framework is a collection of highly cohesive
log data sets that can be used to verify/deny a goal model by
using a RCA algorithm to produce a tractable set of diagnoses
showing which components may have failed.

B. Framework Inputs and Output

1) Log Data: The first input to the monitoring framework
is the natively generated log data. Log data are obtained as
sequences of events from different loggers.

2) Annotated Goal Models: The second input to the frame-
work is a set of annotated goal model(s), each representing
the requirements of the monitored applications. Goal models
can be developed either manually by the system analysts or
through reverse engineering the source code [16] and are
built a priori to using the monitoring framework. Figure
2 illustrates an example of a goal model representing the
Apply For Loan business process used in our test scenario.
Goal models represent an AND-OR tree decomposition of
the functional and non-functional requirements of the systems
being monitored. We annotate goal models with precondition,
occurrence, and effect predicates that are used by the frame-
work to generate queries and extract a collection of log data
that in turn are used to verify the particular properties of the
goal model, or equivalently the functional or non-functional
system requirement, being considered.

3) Monitoring Focus Qualifiers: The third input is the
collection of monitoring qualifiers that represent the user’s
particular points of interest such as time interval, server name,



Fig. 2. Goal Model of the Business Process Apply For Loan

IP address, and user names, etc. The monitoring qualifiers are
expressed using OCL expressions.

4) Framework Output: After post-processing the results of
the SQL queries, the framework produces subsets of inter-
preted log data as a stream of logical literals. The presence
(or lack of) of the logical literals represents the occurrence
(or the non-occurrence respectively) of the set of events of
interest (i.e. preconditions, occurrence and effects of the goal
model nodes). This generated stream of literals is most useful
for a recent RCA technology in software systems based on
the propositional satisfaction of system properties using SAT
solvers [14]. More specifically, given a goal model represented
as a propositional formula f , the propositional satisfiability
(SAT hereafter) problem consists of finding values for the
variables of the propositional formula f that can make f
evaluates to true using the stream of logical log data literals
as evidence of the satisfaction/denial of individual goals/tasks.

IV. LOG NORMALIZATION

Log normalization consists of two steps: first, designing
an unified log schema, and second, building a set of model
transformations. In the first step, we design an unified schema,
that we call LogData, to contain fields that are common
to the different logging systems in our test environment as
well as fields that we deem necessary for our analysis. We
use as a reference in our schema design the WSDM Event
Format (WEF) standard which is an OASIS standardized
version of the IBM’s common based event (CBE) [7], [11].
We also add to LogData some fields that we considered to
be essential but did not appear in WEF such the EventTypeID

field from Windows Event Viewer which represents a class
of events and is different from the EventRecordID. LogData

contains the following fields: EventRecordId, ReportTime,
SourceComponent, SourceComponentAddress, EventSituation,
CorrelationId, EventTypeId and Description. The second step
consists of building model to model transformations to map
fields from individual log sources into the unified schema.

V. LOG REDUCTION

As described earlier, log reduction limits the size of the log
data that need to be considered for verifying or denying a
diagnosis hypothesis generated by the SAT solver.

A. Formation of Goal Annotations

Nodes in the goal models are annotated with OCL expres-
sions pertaining to pre-conditons, occurrence and, effect con-

straints. Furthermore, each of these OCL goal tree annotations
Qa can be augmented with monitoring qualifiers Qm, that are
optional user imposed filters, to yield a more restrictive OCL
expression Qr. Such qualifiers, provide specific limit values
that relate to the name of the process affected, the name of the
server involved and the time interval by which the analysis is
applied on. These qualifiers aim to increase the performance
of the log reduction process. For space limitations we do not
show the details of the augmentation algorithm.

B. Log Reduction based on SQL Query Generation

The first log reduction technique we consider is based
on the generation of SQL queries for each augmented OCL
expression for a goal tree node and the application of these
SQL queries against the log data pool.

An OCL formula generally includes the following compo-
nents: context, def, inv, pre, body, and post.

A particular type of expression appearing in the body of an
OCL formula is the select OCL body operation that has the
general syntax:

collection → select(logical expression)

In this context, the OCL logical expressions we have pre-
sented as annotations of the goal tree nodes in the previous
section (e.g. the OCL augmented expression Qr), correspond
to the logical expressions that will eventually appear in the
select body operation of the complete OCL formula for each
goal tree node. For space limitations we present here only
the select logical expression operation of the OCL formula
instead of the complete OCL formula. The rest of the elements
of the complete OCL formula for each goal tree node are
trivially constructed where the def, pre, post and, inv sections
are set to NULL, and the context section is the name of the
goal tree node.

In turn, the (logical expression) of the OCL
select operation is a Boolean formula consisting of
atomic logical expressions. Each atomic logical expression
is of the form:

(self.attribute name,
comparison operator,
attribute value)

where attribute name represents an attribute of the log
data, comparison operator is of the form (=, <>,<,>,>=
, <=), and attribute value is the value of attribute name.



The SQL query process generation is then as follow:
1) Create skeleton for SQL Query. The skeleton is of the

form:
SELECT ∗ FROM <Log DataBase Table> WHERE
<generated SQL query expression>

2) Create the <generated SQL query expression> from the
logical expressions in a select operation in the body of
the corresponding OCL formula for the given goal tree
node. The creation of such SQL query expression is a
transformation that:
a) maps each OCL logical expression of the form:

(self.attribute name
comparison operator
attribute value)

to
attribute name
comparison operator
attribute value SQL expression and,

b) maintains the structure of the Boolean expression in
the OCL expression to the corresponding SQL query
expression. For example, the OCL expression Qr:

Qr :: self.report time > T1 and self.report time

< T2 and self.source component = ’soapUI’ and

self.description.contains(’receive loan application’)

leads to the corresponding generated SQL expression below:

SELECT � FROM [EV ENTS].[LogData]
WHERE report time > T1 AND report time < T2
AND source component = �soapui�

AND description like %receive loan application%

C. Log Reduction based on Latent Semantic Indexing

The second log reduction technique we consider is based
on LSI [3]. This technique has the advantage that in order
to increase the recall of the process, we allow users to use
more relaxed queries and to obtain ranked results as opposed
to using SQL queries to obtain one fixed result. LSI is a
technique commonly used in web search for ranking and
indexing documents (here the log data represent the documents
searched and indexed). In a nutshell, the LSI based algorithm
can be outlined as follow:

The first step is to create a vocabulary by extracting key-
words from the log data. These keywords represent concepts,
actions, etc. During this process, all capitalization, punctuation
and extraneous markup are stripped away. The second step is
to refine the vocabulary above by applying a stop list and
removing commonly used words that do not carry semantic
meaning. The third step is to apply a stemming process by
removing common endings from words, leaving behind an
invariant root form. The fourth step is to create the term-
document matrix. The rows of the matrix represent a set of
signature vectors each corresponding with a log entry. The
columns of this matrix are the keywords in the vocabulary
generated earlier. The signature vector is populated using a

TABLE I
SQL AND LSI FALSE POSITIVE AND NEGATIVE COMPARISON TABLE

Total Rows False Pos. False Neg.
SQL Where Condition SQL LSI SQL LSI SQL LSI
description like ”Message
Broker started%’

0 199 0 198 1 0

’%MB7Broker%’ or de-
scription like ’%start%’

193 200 192 199 0 0

’%database%’ and
description like ’%start%’

6 22 5 21 0 0

term weighting function that favors keywords that charac-
terize the corresponding log entry, and disfavors keywords
that are common to all long entries. The fifth step consists
of transformation of the term-document matrix into a lower
dimensionality matrix using the SVD algorithm. The trans-
formed matrix is called the concept-document matrix. SVD
allows for the factorization of a matrix A into a product of
three matrices (U ∗ S ∗ V T ), where S is a diagonal matrix
containing the singular values of A. By choosing the highest
k singular values, we can achieve a dimension reduction as
follow Ak = Uk ∗ Sk ∗ V T

k . Finally, the user query is also
considered as a document and is also converted into a vector
in the reduced concept-document space. This vector is then
multiplied by the set of row vectors representing the individual
log entries in the concept-document frequency matrix resulting
in another vector that represent the similarity of the query
against the corresponding log entries.

Note that the two log reduction methods described above
are presented as alternative approaches. The first approach
could be characterized with low false positives and high false
negatives. In fact, when we experimentally filtered log data by
directly applying the generated SQL queries, we noticed that
unless the SQL queries are very relaxed and well formulated,
the filtered log data returned an empty set. On the other
hand, LSI based log filtering is characterized by higher false
positives and lower false negatives. Theoretically, it is possible
to use the two approaches in a complementary fashion (after
relaxing the SQL queries in the first approach) by applying
them sequentially to get better results and lower false positives.

VI. SOA/BPM EXPERIMENTATION ENVIRONMENT
The test environment that we use to illustrate the pro-

posed framework contains a set of off-the-shelf applications
and emulates an enterprise environment. The experimentation
environment includes a business process layer and a service
oriented infrastructure, and is built using commercial off-the-
shelf software such as IBM WebSphere Business Process, IBM
WebSphere Message Broker and Microsoft SQL Server 2008
database management system.

VII. THE FRAMEWORK IN ACTION
Before using the framework, enterprise systems are modeled

using annotated goal models and then executed with event
logging enabled. The framework collects diverse logs, gener-
ates queries that would filter and integrate the log data, which
in turn provide useful information for RCA. To evaluate the
precision and recall of filtering log data using the proposed



framework, we use the test environment described in the
previous section to run a set of experiments and we measure
the false positive and false negative results with respect to
finding log data relevant to a given query.

Our test scenario is based on a custom built financial busi-
ness process (Apply For Loan) deployed on the IBM process
server. The test scenario involves an online user applying for
a loan and having their loan evaluated and finally a loan ac-
cept/reject decision is made based on the information supplied
by the user. We use the two information retrieval techniques:
SQL query and LSI the log data incoming from five different
monitoring sources. The log database table contained 501 log
entries transformed from their original format and stored in
the unified format. The filtering results are shown in Table I.
Queries used in this experiment are of the form SELECT *

FROM [EVENTSDB].[dbo].[LogData] where description like

”%Message Broker started%”, but for space limitation, we
only show WHERE condition in Table I. After performing
LSI, the extracted vocabulary contained 570 keywords. The
rank reduction was done using a k value of 50 corresponding
to a minimum of 3 for singular values. Documents with a
threshold value of α > 0.5 were considered as relevant to
the evaluated queries. We note that for higher values of k,
more concepts are generated, resulting in less false positive
but potentially more false negatives in the filtered log data.

VIII. CONCLUSIONS

This paper presents a framework for log reduction and in-
terpretation in distributed systems. In this paper, we focus only
on the normalization and the aggregation/selection phases.
We inspect log data generated by six off-the-shelf software
applications. Based on the above experimentation, we define
an unified log data format that fields from both standards
(WEF and the Windows Event Viewer) deemed necessary. In
terms of log data reduction, we enhance the basic SQL queries
recall by using the LSI which is an approach commonly used
in web search algorithms. This enhancement leads to less false
positives and easier formulation for queries.

Our main motivation to use goal models is to make the log
data extracted by our framework readily available to be used by
SAT based RCA tools for proving/disproving their diagnosis.
The filtering techniques and algorithms in the proposed frame-
work can be applied to different types of requirement models
(e.g. UML models) or runtime models (e.g. BPEL), as well as
annotations based on predicate logic or JML (Java Modeling
Language). In fact, by interpreting the filtered data according
to the proper context, the proposed framework reduces log data
for other purposes such as intrusion detection, monitoring or
understanding of software systems.

The quality of the reduced log data depends on the quality
and availability of the original log data. Low quality log data
such as log data with too few fields or with generic description
can lead to a degradation of the framework’s precision/recall.
On the other hand, the availability of the log data showing
the internal sequence of events in a system is essential in
order to diagnose correctly the system. For example, one of

our experiments involved the injection of some faults, and
then the application of our framework on the resulting log
data. Although the failure in the application did occur as
expected; however, this failure propagated in some instances
to the corresponding event/log generation subsystem causing
it to fail as well, which potentially lead to reduced accuracy
in our interpreted log data.

Finally, we would like to mention that this work is supported
by a grant from CA Labs.
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