
Challenges and Opportunities Related to the Design, Deployment and,
Operation of Web Services

Kostas Kontogiannis

National Technical University of Athens

Dept. Of Electrical & Computer Engineering
Athens, Greece

kkontog@softlab.ntua.gr

Abstract

Web Services have been proposed almost a decade
ago as an implementation technology for Service
Oriented Architecture. Web Service technologies have
since been adopted by many users as a vehicle to build
such service provision-based software systems. Despite
their widespread adoption, Web Services still pose
significant challenges as well as, opportunities both to
the Information Technology community and, to
Business community. The challenges deal with
engineering, and adoption issues while the
opportunities deal mostly with business and operations
issues. In this paper, we first discuss the state of the art
in the area of Web Services, and then we proceed on
identifying challenges and opportunities related to
designing, implementing, operating and maintaining
such systems. Finally, we present emerging
technologies that we believe may play a significant
role in implementing and deploying the next
generation Web Services and Service Oriented Systems
in general.

1. Introduction

Web Services have been introduced as a particular
implementation technology for building Service
Oriented Architecture systems. Service Orientation has
been proposed over the past two decades as the
conceptual and architectural means for designing and
implementing large scale distributed systems. These
systems are composed of various run-time components
that offer specific functionalities in the form of
services to other components. Service Orientation has
taken over the past two decades different forms and
shapes. Having started as a simple client-server two-

tier architecture, it has evolved to a form of distributed
components that are encapsulated in object wrappers
which offer unified means of invoking such wrapped
components. Remote Method Invocation (RMI) and
CORBA fall in this category of distributed object
technologies.

A further evolution of these technologies along with
the emergence of simple, yet highly practical Internet
application-layer protocols and standards such as
HTTP and XML, led to an infrastructure that allows
for remote systems to be encapsulated by specialized
wrappers which are able to handle HTTP connections
and dispatch service requests from client processes to
the wrapped systems. This infrastructure that utilizes
open Internet Web-based protocols and allows for
loose interconnection of systems to compose large
distributed applications and possibly enact and
implement specific business activities and processes, is
referred to as Web Services.

Since the inception of Web Services, a number of
supporting protocols have emerged over time. These
protocols allow for handling security, handling
transaction management, describing services, and for
specifying quality of service characteristics and service
level agreements, to name a few. Nowadays, Web
Services as a technology have matured to a point
where technologies, patterns and best practices have
started to emerge and being applied in real life large-
scale business and commerce applications.

The architectural abstraction that is relevant to Web
Services is an architectural style referred to as Service
Oriented Architecture or SOA. Service Oriented
Architecture is based on the basic concepts of publish-
subscribe protocols and service repositories. The
fundamental concepts behind SOA (Figure 1) fall in
three main categories.

978-1-4244-2655-3/08/$25.00 © 2008 IEEE FoSM 200811

Figure 1. Service Oriented Architecture Style

The first category deals with protocols that allow the
description and specification of services. These
descriptions can be syntactic to aim for the
specification of the signature and the interface of each
service, or semantic that is to aim for the specification
and denotation of quality characteristics, type, as well
as category and behavior of each service based on
some ontological classification.

The second category deals with the specification of
repositories that allow for service descriptions to be
stored and discovered by client processes. Such service
repositories act as yellow pages or more technically, as
binders for the system. The fundamental idea is that a
service can be selected among similar ones if it best
matches some invocation criteria and objectives that a
client process requires. In this respect, a service
handler is returned to the client with all the necessary
information on how a service can be invoked. The
service selection process and logic may vary according
to the application domain and implementation. To date,
there is very limited use and dissemination of such
public service repositories. The majority of such
repositories are within corporate networks.

The third category deals with the invocation of a
service once a handler is returned to the client process.
The invocation is based on protocols that allow the
request to be transmitted and handled by utilizing open
protocols such as SOAP or, proprietary ones when
specific requirements or objectives must be met.

A further aspect of service orientation and in
particular Web Services is the ability to compose
complex services from simpler ones. This is achieved
by choreography or orchestration specifications
denoted in languages such the Business Process
Enactment

Figure 2. SOA Life Cycle and Governance

Language (BPEL), and the Business Process
Modeling Notation (BPMN).

Service Oriented Architecture as an architectural
style that can be used for implementing Web Services
poses unique opportunities and challenges in today’s
information world. First, it aligns in a natural way
Information Technology (IT) entities with business
models. Second, it provides the enabling technology
for making available through open protocols, legacy
components as services. Finally, it allows for the
creation of complex systems from simpler ones
forming of what is known as Systems of Systems
(SoS).

In this paper, we present an overview of the current
state of the technology in the area of Web Services and
we discuss challenges, opportunities and, emerging
trends in this important area of Information
Technology. The paper is organized as follows.
Section 2 discusses the state of the art in the area of
Service Oriented Computing and Web Services.
Section 3 discusses Challenges and Opportunities.
Section 4 discusses emerging trends and Section 5
provides the conclusion and an outlook for Web
Services and services oriented computing technologies.

2. Outline of State of the Art and Practice

2.1 Service Computing Life Cycle

Based on best practices, IBM has defined a life
cycle for SOA systems that is consistent with other
work on SOA life cycle [1], [6], [11], [15]. This SOA
life cycle, presented in Figure 2, consists of the
following phases: modeling, assembly, deployment
and management.

12

Modeling is the process of capturing business
requirements, business goals and objectives, and
transforming them into business process
specifications—the business model. The modeling
phase also includes the analysis of the model—“what
if scenarios” applied to the business processes. The
Assembly phase deals with the implementation issues:
the business models are implementing by either
reusing existing services or by creating new services.
Functional testing is part of this phase. The
Deployment phase includes resolving service
dependencies, capacity planning, defining the hosting
infrastructure, as well as system testing. The
Management phase refers to the operational activities
that keep the applications running as well as the
measurement of IT and business performance
indicators, logs and traces for auditing, and feedback
for other phases of the SOA life cycle.

To ensure successful deployment of the SOA life
cycle, it should be done in the context of what is
known as SOA governance, as also shown in Figure 2
[2], [16]. SOA governance is the process of
establishing the chain of responsibilities and
communications, policies, measurements, and control
mechanisms that allow people to carry out their
responsibilities. SOA governance itself has a set of
phases: plan, define, enable, and measure. The Plan
phase documents the existing IT capabilities and
defines a governance plan. The Define phase defines or
modifies the governance processes and the governance
infrastructure. The Enable phase deploys the
governance mechanisms and infrastructure, as well as
the policies. The Measure phase monitors the
compliance with policies and the effectiveness of the
governance. SOA governance typically includes
policies and procedures, roles and responsibilities,
design-time governance and runtime governance [5].

2.2 Design and Implementation

Service Oriented systems and Web Services have
been well investigated over the past few years from the
design and implementation perspectives and there has
been already many mature middleware technologies
for process management. Furthermore, wrapping
technology and its implications have been well
understood. The state of the art and in practice here
deal with architectural styles such as three tier and
multi-tier architectures, heterogeneous architectures as
well as with protocols and frameworks such as SOAP,
UDDI, WSDL, J2EE, and .Net to name a few.

2.3. Deployment and Operations

With respect to deployment and operations we are
observing a number of interesting patterns and
practices that have emerged over the past few years.
First, we observe a new evolution paradigm that is
based on a perpetual beta type of evolution model. In
this respect, SOA systems undergo Incremental
Development and Continuous Evolution that is applied
even when the systems have already been in operation.
This paradigm differs from the classic view where the
development and maintenance phases are distinct. This
poses new challenges and opportunities for the
maintenance of such systems. Second, we observe a
silo-based type of adoption and operation of such
systems where services are offered only by a collection
of pre-defined pre-selected services defying in this
respect the concept of a service repository, a concept
that has not caught up as the rest of SOA technologies
did. Furthermore, we have not yet witnessed the
evolution of these systems to a point where they form
Systems of Systems. However, the computing needs
and the availability of the appropriate hardware and
networking resources make certain the formation of
such Systems of Systems that are also referred to as
Ultra Large Scale Systems [10]. Finally, we observe a
shift towards, and the consequent emergence, of
virtualization techniques that allow for the better
utilization of software and hardware resources in high
loads.

2.4. Cross Cutting Issues

In addition to the above, there is a number of
related issues that are peripheral, yet important, to the
deployment of Web Services. For these issues we
observe a gradual and increasing activity that has taken
different forms and shapes according to the area and
application domain systems are deployed. These issues
can be classified as cross cutting issues and deal with
a) governance and compliance and more specifically
with techniques and processes to model policy, risk,
and trust, and to ensure that a service acts on requests
that comply with claims required by policies; b) Social
and legal Issues that are related to the deployment and
use of services in different jurisdictions and; c) People
Skills/Capital an area that is related to the analysis of
skills required to develop, use, and maintain a service-
oriented system. Services Science Management and
Engineering (SSME) that is discussed in more detail
below, is one growing area in this theme.

13

Figure. 3 SOA Domains

3. Challenges

3.1 Business Strategy and Service Orientation

Web Services create new opportunities for the
business world as they allow for the offering of a
wealth of services over the Internet. The phenomenal
growth of e-commerce and B2B transactions over the
Internet has become the motivating factor for many
corporations to consider Web Services and Service
Orientation in general as a potential area of investment.
However, Web Services can not, and should not, be
implemented in a vacuum by considering only the
technical / engineering challenges and issues. On the
contrary, these systems have to be considered,
designed, implemented and deployed only in par with a
specific Business Strategy. The Business Strategy
defines among other entities the Business Model for
Service Orientation. In this respect, the Business
Model defines the function of the applications and
services with respect to a specific Business Strategy,
while the corresponding Service Model denotes how
this functionality is to be provided. Business Models
for service oriented systems is affected by a number of
constraints such as user constraints, technology
constraints, laws, legislations, competitors, areas of
service offerings, access rights to a service as well as,
the computing platforms and the available
infrastructure

Event though there is a significant work in the area
of defining business strategies and business models, to
date we have very limited guidelines and techniques to
establish and document a business case for service
orientation. This is due to a number of factors. First,

technology is evolving rapidly and becomes a moving
target both on budgetary terms, and on technical
capabilities. Anticipating or forecasting the next
technological innovation and its associated costs is not
always easy, and this may complicate the formation of
the long term business strategy decision making
process.

Second, business needs may change over a short
period of time as clients’ needs and product offerings
may also change, especially when services and
products are offered on a world-wide scale to a diverse
clientele.

Third, the revenue generating model for service
oriented systems is not as clear as it is the revenue
generating model that is related to services offered in
the traditional sense. This is due to different economics
of scale as well as, technology, training, operational
and administration issues related to service orientation
such as the need to develop models for contract pricing
and negotiation in an on-demand service setting.
Additional challenges include the investigation of the
relation between IT metrics and business metrics as
well as, methods, models and representations for
assessing the effectiveness of services.

Furthermore, to date we have not yet established
techniques for selecting which service strategy is best
suited for any given business domain or a type of
related domains. By the term service strategy we refer
to the process and activities that tie together Business,
Engineering, and Operations domains of a Service
Oriented Architecture together, informing the
decisions made in each of these domains, and
reflecting the influence they have on each other
(Figure 3). A Service strategy provides the cause-effect
and impact links behind the decisions taken at the
Business, Engineering and, Operations levels in an
organization and it provides the common ground for
the analysis of a service-oriented system that takes into
account different perspectives and points of view.

Finally, another issue that posses challenges for the

formation of a business strategy is how to map
business processes to the appropriate services and how
well a given service fits specific business needs. This
includes techniques for service identification, analytic
methods for service evaluation, techniques and
processes for establishing relations between business
and service models with patterns and stereotypes for
roles and responsibilities of the involved stakeholders
and models for organizational structures in SOA-
environments.

14

3.2 Service Definition and Categorization

In order for services to be evaluated either for

selection or compliance reasons, these must be
described using a thorough and detailed specification
mechanism. This specification mechanism must
provide syntactic, semantic, and behavioral
information about the service. Currently, Web Services
are specified using a standard format namely the Web
Services Description Language (WSDL). This
formalism focuses mostly on the syntactic nature of the
service interface and on details related to the points of
service offering. Over the past few years standardized
ontologies for specific application domains (e.g.
banking, accounting, computer hardware, automotive)
have started to emerge and this created the necessary
momentum for the foundations of behavioral
specifications of services. Formalisms such as DAML-
OIL and OWL have become the de-facto standards in
the community for the behavioral specification of
services. In a similar way, Service Level Agreements
(SLA) have emerged as a way for services to post
specific verifiable guarantees about specific aspects of
the quality of the offered service functionality. Even
though, we have made significant progress towards the
description of services, we have fallen short on
defining standard and prescribed ways for denoting
semantic and meta-data information about services. It
is currently an active area of research that has even
more interest when other types of service offerings
such as REST compliant services are to be considered.

In many cases, service offerings must be adapted
according to the context they are invoked. The
invocation context is defined as the environment in
which a service is to be deployed by keeping in mind
that operations not always operate under ideal
conditions. In this respect, the service model of the
offered services must be adapted according to the
specific requirements of the invocation context. These
requirements may relate to client-side presentation
logic of the results, QoS characteristics of the service,
access rights, as well as invocation and messaging
types (e.g. synchronous, asynchronous). Context aware
service provision remains one of the challenges on
implementing services that are widely adopted.

Finally, there is limited work to date on

investigating techniques and processes to support the
strategic reuse of components and services. This area
can be considered of in two dimensions. The first
dimension deals with techniques and programming
models that allow the design of reusable components.

The investigation of novel design patterns and the
compilation of best practices constitute interesting
challenges for the design and implementation of such
reusable assets. The second dimension deals with the
reuse of existing legacy components and services. In
order to achieve such reuse of legacy components and
services we must consider novel reengineering,
migration and, integration techniques. System-wide
slicing techniques, system-wide dependency models,
impact analysis and wrapping techniques as well as,
data and event mediation frameworks such as service
buses are all challenge and interesting research areas in
this domain.

3.3 Design and Implementation

It is a fact that Web Service technology has

matured due to a collection of open protocols that
allow for the description and invocation of remote
components. Such open protocols include WSDL and
SOAP. However, there is a growing number of other
protocols that are also important but have not reached
yet the level or wide adoption WSDL and SOAP have
achieved. Such protocols deal with security,
authentication, transaction management, and,
monitoring to name a few. These protocols are referred
to as WS-* protocols. The diversity of all these
competing in may cases, protocols that have been
introduced in these areas poses both a challenge and a
threat. It is a challenge as these protocols aim to
advance the state of the art. It is also a threat because
as long as there is such a diversity in these protocols
standards are more difficult to emerge, and therefore
one of the fundamental principles of Web Services
namely openness, is at stake. A challenge in this area is
the investigation of how these protocols can be
amalgamated so that standards can be proposed, or
how mediators and transformers between the different
specification formats, can be built.

The potential and the demand for more wide spread
design and deployment of Web Services posses
another challenge namely the need for highly qualified
technical personnel who have the programming skills
and software engineering knowledge to architect such
systems. At this point in time, the community has
realized that simply there is not enough skilled people
power to design and implement the Web Services and
the Service Oriented Systems in general, that we will
need in the next few years to come. For this purpose,
the research community has focused in two areas that
pose interesting challenges and potential. The first area
is the quest for a new programming model for Web
Services and Service Oriented Architecture. The focus

15

here has been in developing new programming
structures that ease the burden of programming of such
systems. In [3] such a programming model revolves
around Part Types, Roles, Skills, Application
Interfaces and Tools that support a) the provision of a
simplifying abstraction that allows programmers to
concentrate principally on business logic and not on
programming details; b) the provision of uniform
representation for messages that interact with services,
technologies for creating and accessing business logic
and finally; c) ESB technology and means related to
facilitating auditing, logging, routing, adaptation of
mismatched interfaces and security, at an enterprise-
wide level.

Furthermore, Model Driven Architecture (MDA)

and Model Driven Engineering (MDE) pose significant
challenges and opportunities for facilitating the
automatic or semiautomatic code generation for such
systems from higher abstraction design and
specification models. To this extend, challenges relate
to the investigation of what models are appropriate and
complete to denote Web Services at a point of detail
where automatic or semiautomatic code generation will
be possible, and what are the appropriate model
transformation frameworks, and model co-evolution
techniques so that models remain consistent when one
or more of them change due to maintenance and
evolution.

Other challenges related to the design and
implementation of Web Services include the
investigation of transaction management techniques for
large scale systems with long running transactions,
novel messaging and, invocation protocols, the
investigation of the use and the role of CBSE in
Service Oriented Systems as well as, techniques that
allow the personalization and adaptation of services.

3.5 Testing, Monitoring and Diagnostics

Web Service application systems are by definition
large scale, loosely coupled, distributed systems. As
such, they pose significant challenges with respect to
testing, monitoring and, diagnostics.

More specifically, with respect to testing these
systems introduce new challenges related to
integration, system, and regression testing, due to the
loosely coupled components involved, and the nature
of the transactions in such systems. Furthermore,
acceptance testing is more diverse due to the wide
variety of stakeholders and system users. In this
respect we may consider testing challenges for Web

Services falling in three areas a) Infrastructure Level
Testing, where we aim to develop techniques to test
and verify the correctness of SOAP messages, WSDL
specifications, UDDI specifications and any other
related to the application WS-* protocols; b)
Application Level Testing, where we consider Web
Services as components that require functional testing
and transaction management testing; c) Global
Dynamic Testing, where the objective is to test the
composition, orchestration, versioning, monitoring as
well as to perform regression testing and load/stress
testing and finally; d) Business Level Testing where
the objective is to test the conformance of the services
against Service Level Agreements and other business
process requirements.

With respect to monitoring, challenges include the use
of log data from such large applications for error
prediction. The point here is to store logs in data
warehouses and possible to mine these warehouses to
predict system errors or to identify potential threats or
policy violations. In this context one could consider
that such systems may be able to provide Business
Intelligence solutions by monitoring mission and
application critical components.

Another challenge deals with logging, monitoring
and diagnosis not only at the IT level but also at the
Business Process level. The premise here is that large
business applications can be considered and analyzed
at three levels of abstraction. The lowest level pertains
to software components and source code. The next
level pertains to interactions among components at the
API or protocol level. The highest level of abstraction
pertains to business processes. Business processes are
not necessarily involve only software systems but may
also involve humans.. To date, most logging
frameworks focus on monitoring the software
components and there are no adequate frameworks to
monitor systems at the business process level. This
requires the weaving of logs from the actual system,
and input from the manual or human activated part of
the processes. The objective is to provide information
to managers and IT professionals with respect to the
application as a whole by interpreting the behavior of
the system with respect to the context and the business
process it operates on. In [14] a framework for cross
cutting monitoring between infrastructure, application
and, business levels has been proposed as a potential
solution to this problem.

Finally, another challenge area deals with
developing logging and monitoring frameworks for
Ultra Large Scale (ULS), Service Oriented systems.
More specifically, a challenge area is to investigate an

16

infrastructure whereby logging, monitoring, diagnosis
and root cause analysis of such systems can be
achieved in a scalable and adaptive manner. Scalability
deals with the size and complexity of such systems,
while adaptivity deals with the selective and
incremental as-required logging according to
customizable monitoring objectives. To date there is
limited work on logging infrastructures that exhibit
such adaptive behavior and are tailored for SOA type
of applications.

3.6 Maintenance

During the last decade, the number of software
applications that are implemented using multiple
programming languages has increased considerably.
When such applications are maintained, program
comprehension and re-engineering techniques are
required that can handle multiple languages. Multi-
language (ML) systems pose a whole new range of
challenges with respect of extracting information and
modeling dependencies between the components.
Some of these challenges relate to parsing, the
utilization of different language constructs with
different semantics and the diverse designs such multi-
language system encompass. Furthermore, processing
large volumes of information that can be extracted
form ML systems requires the use of sophisticated
tools and tractable algorithms.

Finally, the use of tools to analyze, maintain and

evolve large Multi-language systems is bound to have
an effect on the maintenance and evolution process
models. Some questions that arise in such a Multi-
language analysis and maintenance environment
include the type of metrics or other quantifiable means
to use in order to reason about the evolution process, to
measure the impact of ML software on software
maintenance and evolution and to establish a common
measurement framework.

Another challenge area for the maintenance of Web
Services has to do with the nature of the evolution
cycle of these systems. Web Services and SOA
systems in general do not follow a classic specify-
design-test-deploy paradigm. These systems are under
constant re-implementation and maintenance either to
add new functionality, or port these systems to new
platforms. Some refer to this type of operation as
perpetual beta. To date we do not have developed the
appropriate infrastructure and tooling to efficiently
deal with this type of continuous iterative and
incremental evolution model. Techniques for model
synchronization, model transformation, model

refactoring and model co-evolution may play an
interesting and important role [9].

3.7 Security and Operations

Security has been always in the forefront of
challenge areas for Web Services and has been well
investigated at the infrastructure level (cryptography,
authentication). In a nutshell, we may consider that the
broad area of securing Web Services and SOA based
systems falls in two major topics a) securing the
integrity and confidentiality of messages and most
importantly exchanged data and; b) ensuring a service
acts on requests that comply with claims required by
service level agreements and business policies. Areas
of challenge here deal with developing techniques for
ensuring secure messaging, techniques for validating
policies, techniques for evaluating risk and techniques
for ensuring trust on services and service vendors.

With respect to operations, areas of challenge
include the topics of governance, compliance,
stakeholder management, legal issues related to
offerings of services beyond the boundaries of a
specific jurisdiction as well as, training and education
issues. Governance and compliance emerge as areas of
particular interest to the technical community.
Governance ensures that there is a chain of command
and there is information available to identify who (or
which system or service) does what. Compliance
ensures that whatever service or action is performed is
compliant with specified policies, constraints and
processes. Particular technical challenges in this area
include a) devising techniques and proposing
frameworks for modeling and abstracting IT events
(infrastructure / application layer) as well as modeling
system properties and policies at the business level
(business layer); b) investigating logging and
monitoring (adaptive) as means to populate specific
run-time behavior models of large software systems
and; c) comparing and validating these run-time
behavioral models against business process models, so
that compliance analysis, auditing, as well as
intelligent hardware and software resource allocation
can be achieved.

4. Opportunities and Emerging Trends
4.1. Services Science

Services, and in particularly software services,

have been identified as the largest sector of the
economy in most industrialized nations and it is also

17

Figure 4. Service Component Architecture [12]

becoming the largest sector in developing nations

as well. In this respect, over the past few years IBM
has launched a global initiative that aims to investigate
services not only from the technical and technology
point of view but also as an interdisciplinary area that
requires the expertise of various fields. More
specifically, in [13] the term Service Science
Management and Engineering (SSME) refers to
interdisciplinary research and education that aims to
bring together ongoing work in computer science,
operations research, industrial engineering, business
strategy, management sciences, social and cognitive
sciences, and legal sciences to develop the skills
required in a services-led economy. Several
Universities and educational institutions have already
started offering programs related to SSME. We believe
this is an area of growth and opportunity in the years to
come as it aims to bring together areas that provide
different stakeholder views into building and operating
Web Services and Service Oriented Systems in
general.

4.2. Technology Frameworks

Service Component Architecture (SCA) is
emerging as a strong initiative that is supported by a
number of large software vendors such as BEA
Systems, IBM, IONA Technologies Oracle, Red Hat
Inc., SAP AG, Siebel Systems, Sun Microsystems,
Sybase, TIBCO Software Inc to name a few. Service
Component Architecture (Figure 4) [12] refers to a
number of specifications that define a model for
building Service Oriented Architecture system
applications. The fundamental building blocks of SCA
are Components that act as services or references for
other components. Components may have associated
policies and properties for testing, verification,
validation and compliance purposes. The process of
building an SOA system using SCA is split into two

phases a) the implementation phase of service
components which defines the services and b) the
assembly phase that connects collections of
components to build business applications, through a
wiring mechanism. The strengths of the SCA are first,
that SCA decouples service implementation and
service assembly and second, components utilize the
minimum API from the underlying middleware and it
supports service implementations written in different
programming languages. We believe that this
technology area provides a wealth of opportunities
especially for the design and development of
supporting tooling for the implementation, monitoring
and, versioning of SCA compliant systems.

Java Business Integration (JBI) is another
specification of interest that poses new opportunities. It
has been developed under the Java Development
Process initiative and it provides a pluggable
architecture for a container that hosts service producer
and consumer components. Services connect to the
container via binding components (BC) or can be
hosted inside the container as part of a service engine
(SE). The underlying services model is based on
WSDL 2.0 while the message delivery mechanisms is
based on the normalized message router (NMR) that
delivers normalized messages using the Message
Exchange Patterns of WSDL 2.0. Similarly to the
above, opportunities in this area involve the design and
development of support tooling for JBI related to
implementation, monitoring and, versioning of JBI
system.

REST and Web Services have been so far identified

as complementary and diverse technologies. REST [4]
stands for Representational State Transfer and it
describes an architecture style of networked systems.
REST is based on the premise that the invocation of a
service can be accomplished by the use of resource
identifiers and well formed URI descriptions. REST
provides a lightweight yet powerful style for
implementing SOA systems. On the other hand, issues
relating to different types of messaging, versioning,
and transaction management are not as efficient in
REST as when using Web Services. The opportunity in
this respect lies on the investigation of the relationship
between REST and Web Services as well as the design
of frameworks for bringing closer and utilizing better
combined Web Services and REST services. This can
be achieved possibly through extensions and the use of
SCA or other frameworks such as JBI.

18

4.3. Corporate Mashups

Mashups are defined as digital media files that
integrate different content such as text, graphics, audio,
video and animation that is drawn from pre-existing
sources, to create a new derivative work. Mashups
have been very popular in social networking sites and
for Digital mashups represent a new way of re-using of
existing digital content and integrating this content
with ease. Even though Mashups have been proposed
for non-programmers, one could envision a simplified
programming model that could leverage SOA
principles and Mashups’ ease of use. In particular, an
area of opportunity is the design of frameworks that
allow for corporate users (e.g. managers, executives) to
compile quickly new Mashup applications from a pool
of corporate services. These services may have to do
with decision making support, business intelligence,
process management, and governance. We believe that
this is an area where existing popular technology can
be transferred with the appropriate adaptation to the
corporate world.

4.4. Software as a Service

The traditional view of software is that it is offered
for purchase to users by software vendors. The
software becomes a corporate asset and it is owned by
the client. However this traditional view of software
use has recently been challenged from successful
vendors such as SalesForce. The new view is that
software is rented as a service and it is paid according
to the level of use. This has initiated a new emerging
area referred to as Software-as-a-Service (SaS). This
topic by itself is very intriguing, but when it is
combined with the concepts of Service Oriented
Architecture and Web Services becomes an interesting
emerging opportunity. To date, we have only limited
experience on how to utilize SOA frameworks to
support SaS.

In this respect, we believe that the investigation of
novel technologies, including virtualization, to identify
how one could efficiently deploy SaS utilizing SOA
principles is an emerging field that poses significant
research challenges and commercial opportunities.

4.5 Adaptive and Autonomic Computing

In the recent years IBM Research has launched a
new initiative that has been identified as Autonomic
Computing. The fundamental principle behind these
systems is an infrastructure that allows for self
management. Self management has several facets and
namely self-configuration that allows for the automatic

configuration of components; self-healing that allows
for the automatic discovery, and correction of faults;
self-optimization that allows for the automatic
monitoring and control of resources to ensure the
optimal functioning with respect to the defined
requirements and; self-protection that allows for the
proactive identification and protection from arbitrary
attacks [7]. In this respect an emerging area of
opportunity is the design of frameworks that allow for
adaptive and autonomic service oriented systems to be
built. More specifically, we believe that concrete areas
of research as well as practical opportunities exist in
the investigation of novel techniques that either extend
existing WS-* protocols so that a level of autonomic
behavior in existing Web Services can be achieved or
extend and utilize emerging frameworks such as SCA
to build the next generation service oriented autonomic
systems.

5. Conclusions and Outlook

Service Orientation has been proposed as a major
driving force for offering software components as
services over a networked infrastructure. Given the
fact that the services sector and in particular the
software services sector is among the highest growing
sectors both in the industrialized world and in the
developing world, we find ourselves facing a great
opportunity and challenge. To better channel our
research efforts, we should attempt to reflect upon our
progress to date and recognize how our efforts and
results build on each other, and to identify – and
potentially prioritize – the areas that we still need to
investigate.

In this paper, we discussed challenges and

opportunities behind service orientation and Web
Services. The challenges have been classified in seven
key areas namely Business Strategy and Service
Orientation; Process and Lifecycle; Service Definition
and Categorization; Design and Implementation;
Testing, Monitoring and Diagnostics; Maintenance and
finaly; Security and Operations. Similarly, the
opportunities and emerging trends have been classified
in five areas namely Services Science Management
and Engineering; Technology Frameworks; Corporate
Mashups; Software as a Service; and Autonomic
Computing.

We believe that the outlook for service orientation

and Web Services is very positive and with it come the
challenges to support this paradigm, as well as the
opportunities for new research.

19

About the Author

Kostas Kontogiannis is an Associate Professor at
the Department of Electrical & Computer Engineering
at the National Technical University of Athens, on
leave from the University of Waterloo, Canada. He is
holding a Ph.D. degree in Computer Science from
McGill University, Canada. He is currently working in
the areas of software evolution, software systems
integration and, software monitoring. Kostas has been
the recipient of three IBM University Partnership
Awards, a recipient of a Canada Foundation for
Innovation (CFI) Award and, a former member of the
IEEE Distinguished Visitors Program.

References

[1] Borck, J. Planning an SOA: Gathering Around the
Drawing Board. Infoworld. May 2006.
http://www.infoworld.com/article/06/05/08/77665_19FEsoa
life2_1.html?s=feature
[2] Brown W. and Cantor, M. SOA Governance: How to
Oversee Successful Implementation through Proven Best
Practices and Method.
ftp://ftp.software.ibm.com/software/rational/web/whitepapers
/10706900_SOA_gov_model_app_v1f.pdf
[3] Ferguson D., Stocton M., Introduction to the IBM SOA
Programming Model,
http://www.ibm.com/developerworks/webservices/library/ws-
soa-progmodel/
[4] Fielding, R T. Taylor, R. N., Principled Design of the
Modern Web Architecture, ACM Transactions on Internet
Technology (TOIT) (New York: Association for Computing
Machinery) 2 (2): 115–150,
[5] Gold-Bernstein, B. and So, G. Integration and SOA:
Concepts, Technologies and Best Practices.
[6] High, R., Kinder, S., and Graham, S. IBM’s SOA
Foundation: An Architectural Introduction and Overview.
http://download.boulder.ibm.com/ibmdl/pub/software/dw/w
ebservices/ws-soa-whitepaper.pdf
[7] An Architectural Blueprint for Autonomic Computing
http://www-03.ibm.com/autonomic/
[8] Java Business Integration
http://java.sun.com/integration/
[9] Mens T., Van Der Straeten R., On the Use of Formal
Techniques to Support Model Evolution.
 http://idm.imag.fr/idm05/documents/18/P18.pdf
[10] Notrthrop L. et al., Ultra-Large-Scale Systems: The
Software Challenge of the Future. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2006.
[11] Rodriguez, J. New Rules Govern SOA Lifecycle.
http://www.looselycoupled.com/opinion/2005/rodri-rules-
gov0701.html
[12] Service Component Architecture
http://www.ibm.com/developerworks/library/specification/w
s-sca/

[13] IBM Corporation. Services Sciences, Management and
Engineering, 2006
[14] Traverso P.. Agree of Change! Making Services to
Evolve. Keynote talk, IEEE International Conference on
Software Maintenance 2007, Paris France.
[15] Veryard, R. The SOA LifeCycle. CBDI. August 2004.
[16] Windley, P. SOA Governance: Rules of the Game.
InfoWorld. January 2006.
http://www.infoworld.com/pdf/special_report/2006/04SRsoa
gov.pdf

20

