
Techniques for Software Maintenance

Kostas Kontogiannis
Department of Electrical and Computer Engineering, National Technical University of Athens,
Athens, Greece

Abstract
Software maintenance constitutes a major phase of the software life cycle. Studies indicate that software

maintenance is responsible for a significant percentage of a system’s overall cost and effort. The software

engineering community has identified four major types of software maintenance, namely, corrective,

perfective, adaptive, and preventive maintenance. Software maintenance can be seen from two major points

of view. First, the classic view where software maintenance provides the necessary theories, techniques,

methodologies, and tools for keeping software systems operational once they have been deployed to their

operational environment. Most legacy systems subscribe to this view of software maintenance. The second

view is a more modern emerging view, where maintenance is an integral part of the software development

process and it should be applied from the early stages in the software life cycle. Regardless of the view by

which we consider software maintenance, the fact is that it is the driving force behind software evolution, a

very important aspect of a software system. This entry provides an in-depth discussion of software

maintenance techniques, methodologies, tools, and emerging trends.Q1

INTRODUCTION

Software maintenance is an integral part of the software

life cycle and has been identified as an activity that affects

in a major way the overall system cost and effort. It is also a

major factor for affecting software quality. Software main-

tenance is defined by a collection of activities that aim to

evolve and enhance software systems with the purpose of

keeping these systems operational. The field of software

maintenance was first discussed in a paper by Canning,[1]

where different software maintenance types where imp-

licitly presented. However, it was due to a paper

by Swanson[2] where the terms and types of software

maintenance were first explicitly defined in a typology of

maintenance activities.[2]

In the following years, the software community realized

the importance of the field, and the Institute of Electrical

and Electronics Engineers (IEEE) published two standards

in this area. The IEEE standard 610.12-1990)Q2 and the

updated standard 1219–l998 identify four major types of

software maintenance.[3,4] The first type is referred to as

Corrective Software Maintenance, where the focus is on

techniques, methodologies, and tools that support the iden-

tification and correction of faults that appear in software

artifacts such as requirements models, design models, and

source code. The second type is Perfective Software

Maintenance, where the focus is on techniques, methodol-

ogies, and tools that support the enhancement of the soft-

ware system in terms of new functionality. Such

enhancement techniques andmethodologies can be applied

at the requirements, design, or source code levels. The third

type of software maintenance is referred to as Adaptive

Software Maintenance and refers to activities that aim to

modify models and artifacts of existing systems so that

these systems can be integrated with new systems or

migrated to new operating environments. A fourth type

of software maintenance is Preventive Software

Maintenance. Preventive Software Maintenance deals

with all other design time and development time activities

that have the potential to deliver higher-quality software

and reduce future maintenance costs and effort.[5]

Examples of Preventive Software Maintenance include

adhering to well-defined processes, adhering to coding

standards, maintaining high-level documentation, or

applying software design principles properly. In general,

preventive maintenance encompasses any type of

intention-based activity that allows to forecast upcoming

problems and prevent maintenance problems before they

occur.[4,6] Preventive maintenance touches upon all the

other three types of maintenance and in some respect is

more difficult to define boundaries for.[6] Due to broad

boundaries of preventive maintenance, in this entry we

will mostly focus on core technical and process issues of

the first three types of software maintenance, namely,

corrective, adaptive, and perfective maintenance. The

interested reader can refer to Refs. [2], [6], and [7] for a

more detailed discussion on preventive maintenance.

A number of studies have indicated that software main-

tenance consumes a substantial portion of resources within

the software industry. A study by Sutherland[8] estimated

that the annual cost of software maintenance in the United

States is more than $70 billion dollars for a total of

Encyclopedia of Software Engineering DOI: 10.1081/E-ESE-120044348

Copyright# 2011 by Taylor & Francis. All rights reserved. 1

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

approximately 10 billion lines of code. Considering that it

is estimated that there are more than 100 billion lines of

code around the world,[9]Q3 the annual worldwide cost of

software maintenance is estimated at the staggering

amount of $700 billion dollars. Furthermore, there have

been studies estimating the ratio of software maintenance

cost vs. total development cost. These studies indicate that

software maintenance costs attribute at least 50% of the

total development cost of a software system.[9] Other stu-

dies,[10, 11] have estimated that maintenance costs can even

range between 50% and 75% of the total development cost.

Fig. 1 illustrates the proportional cost for each type of

software maintenance with respect to the total maintenance

cost.

Software maintenance is the primary process for achiev-

ing software evolution. With accumulated experience over

the years, a collection of rules and observations were for-

mulated by M. Lehman[12–14] into what is known as the

laws of software evolution. These laws relate to observa-

tions regarding continuous change, increased complexity,

self-regulation, conservation of organizational stability

and familiarity, continued growth, and quality degradation.

The laws of evolution focus on the observation that in order

for large systems to remain operational they must con-

stantly be maintained, and that an unfortunate consequence

of continuous maintenance is system quality degradation

where systems become complex, brittle, and less maintain-

able. This phenomenon is referred to as software erosion

and software entropy. There is a point when a system

reaches a state where regular maintenance activities

become very costly or difficult to apply. At that point the

system must be considered for reengineering, migration,

reimplementation, replacement, or retirement.

In this respect, software maintenance has been tradi-

tionally considered as an activity that is applied on the

source code of the system and only after the system became

operational. However, more recent views consider that

software maintenance is an activity that can be applied in

all phases of the software life cycle and to a variety of

software artifacts. Therefore, maintenance nowadays is not

considered as a postdevelopment activity but rather as an

activity that is also applied during Greenfield software

development.[15] This view also originates from the con-

cepts of iterative, incremental, and unified process models

as well as Model Driven Engineering (MDE)[16] that pos-

tulate software system development as an incremental

process whereby requirements, design, source code, and

test models are continuously updated and evolved.

As with every engineering activity, software mainte-

nance must follow a specific prescribed process.[17]

A complete maintenance path encompasses the identifica-

tion, selection, and streamlining of software analysis and

software reverse engineering, software artifacts transfor-

mation, and software integration.[18] Here, we will attempt

to present a unified process description for software main-

tenance that includes fours major phases, namely, portfolio

analysis/strategy; modeling/analysis; transformation; and

evaluation.

In the portfolio analysis/strategy phase, the issues and

problems of the system in its current form are identified.

In the modeling/analysis phase, software artifacts are

denoted and analyzed so that maintenance requirements

can be set based on the systems’ state and strategy. The

modeling/analysis phase allows for complete maintenance

paths to be defined and planned. More specifically, in this

phase, software artifacts are represented and denoted uti-

lizing a modeling language and formalism, and conse-

quently, various models of the existing system [usually

models of the source code such as the Abstract Syntax

Tree (AST)] are analyzed. The result of this phase is the

identification of specific system characteristics that can be

used to define maintenance requirements, maintenance

objectives, and quantifiable measures for determining

whether the results of a maintenance activity when com-

pleted will meet the initial maintenance requirements and

objectives or not.

In the transformation phase, the selected maintenance

path is applied utilizing software manipulation and trans-

formation tools.

Finally, in the evaluation phase, measurements for eval-

uating whether the selected maintenance activities have

met technical and financial requirements set in the analysis

phase are applied.

Having briefly introduced software maintenance as a

phase in the software life cycle, we can now proceed to

discussing specific techniques, methodologies, and tools

that support software maintenance. This entry is organized

as follows. In the “Software Maintenance Process” section

we discuss the software maintenance process. In the

“Software Maintenance Techniques” section we discuss

key software maintenance techniques, while in the

“Tools, Frameworks, and Processes” section we discuss

tools and frameworks for software maintenance. In the

“Emerging Trends” section we present emerging trends

in the area of software maintenance and in the

“Concluding Thoughts” section we provide some final

thoughts on this subject.

Fig. 1Q18 Proportional cost per maintenance type.

2 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

SOFTWARE MAINTENANCE PROCESS

As an engineering activity, software maintenance should

adhere to specific processes. Different research groups and

practitioners have considered the problem and have pro-

posed a number of process models for software mainte-

nance.[19] By taking into account the state of the art and

practice, we can consider that software maintenance process

encompasses four major phases, namely, portfolio analysis

and strategy determination; system modeling and analysis;

artifact transformation; and finally, evaluation.

The portfolio analysis and strategy determination phase

aims to identify, gather, and evaluate the resources, com-

ponents, and artifacts that make up a system and conse-

quently assess the current state of the system so that

specific maintenance requirements and objectives could

be set. Depending on the nature of the problems discov-

ered, the appropriate maintenance strategy and action can

then be drafted.

The second phase, system modeling and analysis, aims

to denote and represent system resources, components, and

artifacts in a specific modeling formalism, and allow for

the extraction of important information from the system for

the purpose of understanding its structure, dependencies,

and characteristics.

The third phase, artifact transformation, aims to apply

various maintenance and transformation techniques to

achieve the requirements and the objectives set in the

portfolio analysis phase.

Finally, the evaluation phase aims to apply techniques to

assess whether the maintenance requirements and objectives

have been met as the result of maintenance operations as

well as to assess the quality characteristics of the new sys-

tem. These phases are applied incrementally and iteratively

and not in a piecemeal sequential manner. In this respect,

portfolio analysis and strategy determination phase feeds

results to system modeling and analysis phase that in turn

produces results that can be fed back to and revise/extend the

portfolio analysis and strategy determination phase, moving

iteratively, incrementally, and gradually through the trans-

formation and evaluation phases. Fig. 2 illustrates a

schematic block diagram of the maintenance process.

Portfolio Analysis and Strategy Determination

The objective of portfolio analysis and strategy determina-

tion is to assess the system from a financial, technical, and

business perspective. The purpose is to compile an inventory

of a system’s physical objects and its dependencies, to con-

struct an operational profile of the system in terms of its

delivered functionality, to calculate an estimate of its opera-

tional and maintenance cost and effort, to identify various

Key Performance Indicators (KPIs), and to collect satisfac-

tion ratings obtained from the users of the software system.

The results of this phase can be used to establish mainte-

nance requirements and determine the appropriate strategy

that is required such as whether the system will be main-

tained (enhanced, ported, corrected), redeveloped, retired,

or be kept as is. The sections below discuss in more detail

the phases of portfolio analysis and strategy determination.

Software portfolio analysis

This phase aims to create an inventory of the system’s

physical objects and resources, evaluate its operational

state, and assess the system’s role in the overall corporate

strategy, mission, and processes.[20] In addition, a compila-

tion of data related to maintenance and operational costs of

the system is important in order to evaluate maintenance

efforts from a financial perspective. This phase requires

static analysis of the source code to compile a record of the

system’s physical objects, and dynamic analysis of traces

to assess the system’s behavior against the specified or

intended behavior. Compilation of historical and forecast

financial data related to the cost of operations over the

remaining operational period of the system are also impor-

tant data to be collected in this phase.

Static analysis tools can provide a wealth of source

code-related information such as valuable information

with respect to unused code, metrics, poor coding prac-

tices, as well as component dependencies. The dynamic

analysis tools can provide information with respect to

whether the system achieves its functional and non-

functional requirements including security issues, memory

usage, performance degradation trends, and interface bot-

tlenecks. Finally, the compilation of operation and histor-

ical maintenance data could provide valuable information

with respect to annual change rate of the modules of the

Fig. 2 Q18Software maintenance process.

Techniques for Software Maintenance 3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

system, compilation of software maturity indexes, average

time/effort/cost measures for typical maintenance tasks,

mean time to failure metrics, mean time to repair metrics,

failure intensity metrics, compilation of the number of

cumulative system failures, as well as reliability and avail-

ability measures and profiles using standard reliability

growth models.[21]

Strategy determination

The objective of this phase is to identify maintenance

requirements and to devise a strategy with respect to main-

tenance activities that should be considered, given the

current state of the system. The different strategies include

restructuring, migration, porting, enhancement, redevelop-

ment, or keeping the status quo, that is, leaving the system

as is until its final retirement. In order to make these

decisions, the results from the portfolio analysis phase

are considered in addition to the information obtained

from a number of system and environment characteristics

that help determine the importance and vulnerability of the

system from a mission and business operations perspec-

tive.[22–24] These characteristics pertain to system vulner-

abilities due to obsolete implementation programming

languages and infrastructure used, software mission criti-

cality and anticipated impact in case the system fails,

preparedness and the level of technical competency of the

organization to undertake a maintenance project, availabil-

ity of funds supporting the maintenance efforts, and man-

agement commitment.

In order to select an overall maintenance strategy one

must consider several factors and conduct a thorough tech-

nical, financial, and risk assessment of the systems that are

to be maintained. For the sake of simplicity, we can con-

sider that a very generic assessment can be based on the

system’s business value vis-à-vis the ease of change, or on

user ratings vis-à-vis the quality coefficient of the system.

Fig. 3 summarizes such a high-level software maintenance

road map from guidelines presented in Ref. [25]. Another

guideline is based on questionnaires and detailed technical,

economic assessments and management assessments that

select the appropriate maintenance strategies for a given

system or a family of systems.[24] Finally, yet another

guideline that aims to produce a maintenance strategy

specifically for migrating legacy systems to Service-

Oriented Architecture (SOA) environments is also based

on questionnaires and system analysis to establish the

migration context, to describe existing capability, and to

describe the target SOA state.[26] These different strategies

aim to provide answers to whether it makes sense to apply a

specific maintenance task, what parts of the system can be

reused, what type of changes need to be applied to which

components in order to accomplish the maintenance objec-

tives, and how to obtain a preliminary estimate of cost for a

given maintenance task or activity.

System Modeling and Analysis

The objective of modeling and analysis is the representa-

tion of source code (or even binary code)[27] at a higher

level of abstraction using a domain model (schema), and

the subsequent analysis of such models so that dependen-

cies between system artifacts can be extracted and mod-

eled.[28] This phase encompasses two major tasks. The first

task is referred to as source code representation and utilizes

parsing technology to compile a model of the source code

that can be algorithmically and mechanically manipulated.

The second task is referred to as source code analysis and

aims to assist on program and system understanding. The

sections below discuss in more detail the phases of source

code modeling and source code analysis.

System modeling

System modeling focuses on the construction of abstrac-

tions that represent and denote source code, computing

environment characteristics, and configuration informa-

tion at a higher level of abstraction. In particular, the area

of source code modeling or source code representation

deals with techniques and methodologies to represent

information on a software system at a level of abstraction

that is suitable for algorithmic processing. System model-

ing has a profound impact in software maintenance as it

affects the effectiveness and the tractability of mainte-

nance activities. The effect of modeling formalisms to

software maintenance has been discussed in Ref. [29].

There are two major schools of thought in the source

code modeling domain. The first school of thought advo-

cates formal models that not only aim to represent the

source code at a higher level of abstraction but also to

denote the semantics of the source code on a rigorous

mathematical formalism. In this respect, formal properties

of the code can be proven using theorem proving or other

formal deduction techniques. Approaches that fall in thisFig. 3Q18 Guidelines for selecting a maintenance strategy.

4 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

category include structural operational semantics, denota-

tional semantics, axiomatic semantics, p-calculus, and pro-
cess algebras.[30–32] A criticism on these approaches is that

models are difficult to build and manipulate algorithmi-

cally, especially for large industrial systems.

The second school of thought advocates more informal

models that are produced from parsing or scanning the

code. These models do not necessarily have well-defined

formal semantics, but provide and convey rich-enough

information so that source code analysis and manipulation

of large software systems can be tractably achieved.

It is evident that both approaches have benefits and

drawbacks. The intuition behind the first approach that

utilizes formal models allows for properties of the source

code to be verified, a very important issue for mission-

critical systems analysis. However, these approaches do

not scale up very well as the complexity and the size of

such formal models may become unmanageable for large

systems.

Similarly, the intuition behind the second approach

that utilizes informal models is that it allows for a

“good-enough” analysis of very large systems in a tractable

manner. For example, the architectural recovery of a multi-

million line system does not require highly formal and

mathematical models. The motivation here is to utilize

models that can represent massive amounts of data to

tractable algorithms so that we can obtain a solution that

is useful to software engineers who can proceed with a

more detailed and targeted analysis if needed. In this entry,

we focus on the use of the latter type of informal models as

these are mostly used in practice for the analysis and

maintenance of large software systems. These include

ASTs, Call Graphs, Program Summary Graphs, and

Program Dependence Graphs (PDGs) among others.

These representations are achieved by parsing the source

code of the system being analyzed at various levels of

detail and granularity (i.e., statement, function, file, pack-

age, subsystem level). Models can also be denoted by a

variety of means such as tuples, relations, objects, and

graphs. Regardless of how the models are denoted they

have to conform to a schema that is referred to as the

Domain Model. Domain models can be represented in a

variety of ways but most often are represented as relational

schemas or as class hierarchies.[33–36]

One specific type of model that is most often used for

software analysis and maintenance is the AST. ASTs are

tree structures that represent all the syntactic information

contained in the source code.[37] Every node of the tree is

an element of the programming language used. The non-

leaf nodes represent operators, while the leaf nodes repre-

sent operands. ASTs suppress unnecessary syntactic

details (whitespace, symbols, lexemes, punctuation

tokens) and focus on the structure of the code being repre-

sented. The AST notation is the most commonly used

structure in compilers to represent the source code intern-

ally in order to analyze it, optimize it, and generate binary

code for a specific platform. In this context, source code

modeling aims to facilitate source code analysis that can

also be applied at various levels of abstraction and detail,

namely, at the physical level where code artifacts are

represented as tokens, lexemes and ASTs; the design

level where the software is represented as a collection of

modules, interfaces, and connectors; and the conceptual

level where software is represented in the form of abstract

entities, such as objects, Abstract Data Types (ADTs), and

communicating processes.

An example of a fraction of a domain model for the C

programming language presented as a class hierarchy is

illustrated in Fig. 4. More specifically, Fig. 4 illustrates

part of a domain model in the form of a hierarchy of classes

that denote structural elements of the C programming

language. For example, as depicted in Fig. 4, the C pro-

gramming language has Statements, a subcategory of

which is Condition_Statement. A subcategory of

Condition_Statement is Statement_If, and so on.

Similarly, the language has Expressions, subcategories of

which include Predicate_GT, Predicate_LT, etc.

A parser can be used to invoke semantic actions that aim

to populate such a domain model and create objects that are

associated and form a tree structure as the one depicted in

Fig. 5. Such trees are referred to as ASTs and provide a

very rich model, which can be used for source code analy-

sis and transformation. Fig. 5 illustrates the Annotated

AST that is compliant with the domain model of Fig. 4

and pertains to the following snippet of code:

Fig. 4 Q18Sample domain model class hierarchy for the

C programming language.

Techniques for Software Maintenance 5

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

IF (OPTION > 0)
SHOW_MENU(OPTION)

ELSE
SHOW_ERROR(“Invalid option..”)

The Abstract Semantic Graph, or ASG for short, also

provides a rich abstract representation of source code text.

ASGs are composed of nodes and edges. Nodes represent

source code entities, while edges represent relations. Both

the nodes and the edges are typed and have their own

annotations that denote semantic properties.[38]

The Rigi Standard Format, or RSF for short, is a

format for representing source code information. It is a

generic, intuitive format that is easy to read and parse.

The syntax of RSF is based on entity relation triplets of

the form <relation, entity, entity>. An example of an RSF

tuple is <calls Function_1 Function_2>. Sequences of

these triplets are stored in self-contained files.

Fig. 5Q18 Sample Annotated Abstract Syntax Tree class.

6 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Currently, RSF is the base format for the reverse engi-

neering tool Rigi.[34,39]

The Tuple-Attribute Language, or TA for short, is a

metamodeling language designed to represent graph infor-

mation.[40] This information includes nodes, edges, and

any attributes the edges may contain. TA is easy to read,

convenient for recording large amounts of data, and easy to

manipulate. The main use for TA is to represent facts

extracted from source code through parsers and fact extrac-

tors. In this way TA can be considered to be a “data

interchange” format. Other metamodeling languages for

representing software artifacts include the FAMIXQ4 meta-

model used by Moose,[41] the GXL,[36,42] and the

Knowledge Discovery Metamodel (KDM)[43] proposed

by the Object Management Group (OMG).

Other popular source code representation models

include the Control Flow Graphs, Data Flow Graphs, Call

Graphs, and PDGs.[37,44] Control Flow Graphs denote the

possible flows of execution of a code segment from state-

ment to statement. Data Flow Graphs offer a way to elim-

inate unnecessary control flow constraints in representing

the source code of a system, focusing mostly on the

exchange of information between program components

(basic blocks, functions, procedures, modules). Call

Graphs offer a way to eliminate variations in control state-

ments by providing a normalized view of a possible flow of

execution of a program. In Control Flow Graphs, nodes

represent source code basic blocks, while edges represent

possible transfer of control from one basic block to

another. A Call Graph represents invocation information

between functions or between procedures. Nodes in the

Call Graph represent individual functions or procedures

and edges represent call sites and may be labeled with

parameter information. Finally, PDGs have been exten-

sively used for software analysis and in particular source

code slicing. Nodes in PDGs represent either statements or

entry or exit variables in a code fragment, usually this code

fragment being the body of a function, while edges repre-

sent either control dependencies, or data flow dependen-

cies. Control dependencies in PDGs indicate that one

statement may or may not select the execution of another

statement (e.g., the condition in a Statement_If may or may

not select the execution of the then or the else part of the

statement’s body). Similarly, data flow dependencies

between nodes in PDGs denote that one statement (node)

defines the value of a variable and the other statement

(node) uses the variable.[44]

In the paragraphs above, we focused mostly on the

representation of modeling of source code. Another impor-

tant dimension is the extraction of models from binary

files, an area what is referred to as binary analysis.[27,45]

System analysis

Analysis takes two forms: static and dynamic analysis.

Static analysis focuses mostly on the analysis of the source

code.[46] Dynamic analysis aims at extracting information

andmodels from execution traces.[47–49] The primary focus

of the static or dynamic analysis of the system is the

compilation of various system views such as architecture

views, code views, metrics views, and historical views.

These views allow the identification of the system’s

major components, data and control flow dependencies,

data schema structure, configuration constraints, as well as

the extraction of various metrics that serve as indicators of

the system’s quality and maintainability. For system ana-

lysis we consider the following important points of interest.

Architectural extraction is one such area of system

analysis that deals with the identification of major system

components and their dependencies.[50] These components

and their dependencies (calls, uses, imports, exports) pro-

vide a view of the system at the architecture level. The

identified components are composed of collections of

functions, data types, and variables. For the formation of

the components that constitute an architectural view of the

system, clustering is used as the primary technique.

Elements such as functions, data types, and variables are

grouped together according to some clustering strategy and

according to some distance or similarity measure.

Architecture extraction analysis can be used for the migra-

tion of legacy systems to Network-Centric and to Service-

Oriented environments. An example of an extracted archi-

tecture is illustrated in Fig. 6, where a large system has

been abstracted in the form of an Entity Relationship (ER)

graph where nodes are files and edges denote data flow,

control flow, and call information between these files. A

clustering algorithm has been applied in this ER graph to

yield groups of files that share common flows while flows

between groups are minimized. These groups illustrated in

Fig. 6 can be considered as components of the recovered

system architecture.

Another important area of system analysis is the extrac-

tion of ADTs.[51,52] The extraction of ADTs encompasses

two tasks. The first task deals with the analysis of data

types in the source code of the system and the assessment

of whether these data types can be considered as ADTs or

not. The assessment criteria are based on how extensive is

the use of these types in the system, the operations that are

associated with these data types, and their relationship with

other data types. The second task deals with the identifica-

tion and attachment of operations to these ADTs as well as

with the identification of possible specializations and gen-

eralizations among these types. ADT extraction can be

used for the migration of systems written in procedural

languages to new systems that conform with the Object-

Oriented programming paradigm.[53]

Yet another important area of system analysis is sli-

cing.[54,55] Slicing is a technique that allows for the identi-

fication of all system elements that are affected by, or

affect, a particular system element at a particular location

that is referred to as the slicing criterion. Slices can be

classified as forward slices and backward slices. The most

Techniques for Software Maintenance 7

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

common use of slicing is source code slicing. In this

respect, a slicing criterion is a program statement variable

at a specific point. A forward slice is a collection of state-

ments that are affected by the slicing criterion. A backward

slice is a collection of statements that affect the slicing

criterion. The result of the slice can even be an executable

program that includes all the statements in the forward or in

the backward slice given a slicing criterion. Slicing is

based on the analysis of source code models such as the

AST or the PDG.[44]

Another area of system analysis is data flow analysis.

Data flow analysis is an area originally proposed in the area

of optimizing compilers and in the area of unit testing .[37,56]

Data flow analysis is based on how data propagate through

the control flow structure of a code fragment. There are

several data flow analysis algorithms proposed in the lit-

erature. In the context of software maintenance, these

algorithms are used for determining the dependencies

between statements and for estimating the potential impact

of a change when maintaining the source code of a soft-

ware application. The most frequently used data flow algo-

rithms for software maintenance include the algorithms of

reaching definitions, def-use chains, available expressions,

and constant propagation. Reaching definitions data flow

analysis aims to identify all definitions of a variable that

reach a given point, in other words, what are the possible

values of a variable at a given program point. Def-use

chains data flow analysis aims to identify for a given

definition of a variable all the possible uses of it.

Available expressions data flow analysis aims to identify

the scope in which the value of specific expressions

remains unchanged. In this respect, as long as the value

remains unchanged, one could potentially replace a com-

plex reoccurring expression with a variable denoting its

value. This allows for program simplification and therefore

easier maintenance. Finally, constant propagation analysis

Fig. 6Q18 Snapshot of extracted system architecture.

8 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

aims to identify variables that obtain a constant value and

all the points where this constant value can be safely

used.[37]

Another area is data schema analysis. Data schema

analysis is a type of analysis that pertains mostly to data-

centric systems that utilize and access transactional data-

bases. To maintain such systems it is not adequate to

analyze the source code that pertains to the transaction

logic or business logic but it is also important to analyze

and identify dependencies between the elements of the data

schemas used by the application.[57] Data schema analysis

can be used for schema simplification, thus reducing the

size and complexity of the data or facilitating schema

merging and schema mediation, two very important tasks

for system integration and interoperability.

Similarly, the area of metrics analysis is a type of

system analysis that is aiming for the compilation of a

collection of various software metrics that reflect in quan-

tifiable terms structural properties of the code and of the

design of the system in general. These computed metrics

can be used in different ways for software maintenance.

Some of the most typical uses of metrics are as quality

predictors for a specific design,[58] as differential indica-

tors when two versions of a system are compared, or as

clone detection techniques.[59,60]

Transformation

The objective of the Transformation phase is to apply

manual, semiautomatic, or fully automatic techniques

that allow for the manipulation of the source code, the

event flows, or the database artifacts so that maintenance

goals and objectives can be achieved. An example of a

particular type of transformation is the architectural repair

transformation that is applied at the design or architecture

level and aims to repair a legacy system’s architectural

drifts that may have occurred due to prolonged mainte-

nance operations. The transformation phase can be consid-

ered in the context of three distinct activities, namely,

functional transformations, process transformations, and

data transformations.

Functional transformations can be applied at the

design/architecture level or at the source code level.

These transformations aim to manipulate code artifacts to

repair faults, add new functionality, or adapt/port the sys-

tem to new platforms and environments. When functional

transformations are applied at the design/architecture level

they take the form of what is referred to as architectural

repair.[61] Similarly, when functional transformations are

applied at the source code level they take the form of what

is referred to as code transformations.[62] When these

transformations do not aim to change the behavior and

the functionality of the system (e.g., to increase its quality)

they are also referred to as refactorings.[63,64]

Process transformations are applied at the event flow

level or at the workflow/process level. Event flows denote

how and in which order events are channeled from origi-

nator processes (callers) to receiver processes (callees).

Similarly, workflows denote the order by which processes

and data stores are activated during the system’s operation

for a given use case or application scenario. When process

transformations are applied at the event flow level, we aim

to manipulate the way systems/components interact and

are part of an area called event processing. Examples of

event flow transformations include integration with third-

party components and integration with monitoring/audit-

ing tools. When process transformations are applied at the

workflow or business process level these take the form of

IT workflow reengineering or business process reengineer-

ing, respectively.[65]

Data transformations are applied at the schema or data

instance level with the purpose to analyze and manipulate

the logical and physical data in an application. When data

transformations are applied at the logical level, these may

take the form of data schema manipulations. Similarly,

when data transformations are applied at the physical

level, these may take the form of manipulation of data

streams or even manipulation of individual instances of

data.[66] An example of data transformations at the logical

level is the alteration of a schema in a database by adding or

removing fields and relations. Similarly, an example of

data transformation at the physical level is the alteration

of data streams from binary to text, or the alteration of a

specific data item in a form that can be consumed by a

client process.

Evaluation

The objective of the evaluation phase is to assess whether

software maintenance activities fulfill the maintenance

requirements and the desired maintenance goals set in the

strategy determination phase. In this respect, there are two

major points of view we can approach the evaluation

phase. The first is from a technical standpoint while the

second is from a financial standpoint.

Technical evaluation

The selection of the technical evaluation strategy to be

used depends on the type of maintenance objective (adap-

tive, corrective, perfective) and the type of transformation

(functional, process, data) that has been applied. One could

consider four major technical evaluation strategies. The

first is based on static analysis of the source code, the

second is based on software testing techniques, the third

is based on software metrics, and the fourth is based on

feature modeling and analysis. These four strategies are

complementary in the sense that each one provides differ-

ent evidence toward evaluating the effectiveness of the

maintenance operations applied.

The first technical evaluation strategy, namely, the sta-

tic analysis of the source code can be applied when we have

Techniques for Software Maintenance 9

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

ample access to the source code of a system, and we would

like to prove that certain structural properties of the source

code or the design of the system hold after specific main-

tenance operations have been applied and completed. This

type of evaluation may take the form of identifying that

certain dependencies between components have been

eliminated or established accordingly, or that certain

design patterns or refactorings have been introduced.[67,68]

Component dependencies include data and control depen-

dencies, use or exposure of interfaces from one to other

components or applications, or the use of common libraries

and protocols. Similarly, static analysis techniques can

assist toward the evaluation of whether or not a design

pattern or refactoring has been or can be introduced in a

particular part of a system. In this respect, it has been

experimentally shown that the introduction of design pat-

terns or refactorings plays a role toward enhancing the

quality of a software system.[69] By verifying statically

that such structures have been introduced into the system,

software engineers may make assumptions on the quality

and extensibility of the new system.

The second technical evaluation strategy is based on

testing and can be used whether we have full access to the

source code or not.[56,70] Furthermore, different testing

techniques can be used for different types of evaluations.

For the evaluation of the impact maintenance activities

have on a system, software engineers may opt for regres-

sion testing techniques applied at the unit level (unit test-

ing), at the component level (integration testing), or that

the system level (system and functional testing).

Depending how much access we have to the source code

of a system, we can choose what type of testing we can

apply. When we have full access to the source code we

consider white box testing techniques, whereas when we

have partial or no access to the source code we apply gray

box or black box testing, respectively.

The third technical evaluation strategy is based on

metrics and can be used when we have some access or

full access to the source code of the system. The metrics

techniques can be applied in two ways. First, metrics can

be used to determine whether particular components of a

software systemmeet specific structural properties that can

be quantified by such metrics. Second, metrics can be used

to determine whether specific maintenance operations that

have been applied had a differential impact on metrics

before and after the specific maintenance operations took

place. This differential on metrics values may serve as an

indicator that the specific maintenance operations had a

positive or negative impact on the system quality. In the

related literature there are several different software

metrics that have been proposed as indicators of the overall

system quality and maintainability.[71] In this respect,

Victor Basili in Ref. [72] proposed the Goal-Question-

Metric (GQM) approach, where different metrics can be

used to assess software systems and processes according to

the specific assessment goals and assessment questions

that arise from these goals. Examples of metrics that relate

to evaluating a software system with respect to mainte-

nance cost and effort include Current Change Backlog,

Change Cycle Time from Date Approved and from Date

Written, Cost per Delivery, Cost per Activity, Number of

Changes by Type, Staff Days Expended/Change by Type,

Complexity Assessment, etc.

Other examples of metrics that serve as indicators of the

quality and maintainability of a code fragment is the cyclo-

matic complexity of its Control Flow Graph measured by

the McCabe cyclomatic complexity metric, and the esti-

mated degree of the delivered functionality by a code

fragment measured by the Function Point metric. The

interesting property of the Function Point metric is that it

can also be applied at the design or component level of a

system and relates to the level of cohesion of a code

fragment or a component.[73]

Furthermore, metrics can be combined in linear formu-

las that serve as predictors of software quality or maintain-

ability.[74] These linear formulas can be developed

experimentally using past maintainability data and linear

interpolation techniques. For example, in Ref. [58] Q5, the

software maintainability index (SMI) of a software module

is estimated by a linear formula of the form

SMI ¼ 125� 3:989 � FANavg � 0:954 � DF� 1:123
�MCavg

where SMI is the predicted maintainability of a module,

FANavg is the average number of calls emanating from all

classes/functions of the module, DF is the total number of

incoming and outgoing data flows from the module, and

MCavg is the averageMcCabe cyclomatic complexity of all

methods/functions of the module. According to experi-

mental studies presented in Ref. [75], SMI values below

65 indicate low maintainability, values between 65 and 85

indicate medium maintainability, while values above 85

indicate high maintainability.

The fourth technical evaluation strategy, namely,

feature-based analysis aims to collect features from the

system (design artifacts or source code artifacts) and

attempt to assess how design decisions affect quality attri-

butes. Two of the most well-known techniques in this area

are Software Architecture Analysis Method (SAAM)[76]

and the Architecture Tradeoff Analysis Method

(ATAM).[77] These techniques aim to assess the impact

design decisions have on software system quality with

emphasis on performance, security, availability, and mod-

ifiability. These techniques can also assist on evaluating

the trade-off among different design choices. The techni-

ques are based on a structured process that aims to identify

and present the scope and goals of the evaluation; perform

investigation and analysis of the alternative design deci-

sions; test and prioritize alternatives; and report findings.

The techniques can also be used for Greenfield software

10 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

development[15] early in the life cycle or to analyze exist-

ing legacy system architectures.

Financial evaluation

The evaluation of maintenance activities from a financial

standpoint takes the form of computing the maintenance

and operational cost for keeping the system as is vs. the

cost of performing specific changes to the system (adap-

tive, corrective, or perfective changes), and computing the

expected reduced maintenance and operational cost for the

new enhanced system if the maintenance operations are

applied. In the related literature there are a number of

different techniques to perform economic analysis for eval-

uating maintenance operations from a financial standpoint.

Most of these techniques fall into three major categories.

The first category deals with the traditional economic

analysis that is based on the concepts of Net Present Value

(NPV), Benefit Investment Ratio (BIR), Return on

Investment (ROI), and Rate of Return (ROR).[24] These

indicators, especially the NPV and BIR indicators, are used

to determine which type of maintenance operation will

have the highest economic impact or alternatively, what

is the economic impact of a selected strategy. The strategy

that yields the highest NPV or BIR is preferable from a

financial point of view. Similarly, we are also interested in

keeping the ROI and ROR indicators as high as possible. In

the related literature, the strategy of doing nothing and

keeping the system as is to deteriorate toward its retirement

is considered the null or status quo strategy. All other

strategies can be compared with the null strategy. The

NPV of a given strategy is defined as the difference of

the Present Value (PV) of the total cost of the status quo

strategy and the PV of the total cost of the given strategy.

The PV of the total cost of a strategy is defined as the sum

of the cost of implementing the strategy and the cost of

operating and supporting the new system that has been

produced by applying the specific strategy.[24]

The second category is based on prediction methods

that estimate the effort savings for support and mainte-

nance in person months for the new updated system vs.

the effort for support andmaintenance in personmonths for

the old system.[78,79] An example of such an effort predic-

tion model is COCOMO,[80] which takes as input the

annual change rate of the system due to scheduled main-

tenance, the effort to implement a maintenance strategy,

and a quality indicator of the system, and yields an estimate

for the maintenance effort for this system. As the quality

indicator of the system increases, the annual maintenance

effort to keep the system operational decreases. In this

respect, we aim to select those maintenance operations

that have the highest impact on the quality indicator of a

system. There are a number of different quality indicators

that can be used, such as the Software Maturity Index, and

indexes that are based on a linear combination of software

metrics.[71,58]

Finally, a third technical evaluation category that is

gaining attention over the past few years is based on futures

valuation theory and on portfolio valuation theory.

Valuation theory is a robust field in finance and proposes

techniques to estimate the value of a choice that becomes

available with an investment (i.e., a specific maintenance

operation).[81] As software maintenance and evolution

activities imply new choices for future expansion, adapta-

tion, and correction, futures valuation theory allows for the

estimation of the value (i.e., the future benefits) of the

alternative investment opportunities (i.e., alternative main-

tenance operations). The choice with the highest valuation

can be considered as the most preferable from a financial

point of view. Relevant to the futures valuation approach

are techniques that aim to valuate software portfolios. The

idea is that alternative maintenance options provide as a

result different alternative software portfolios that can be

evaluated. The maintenance operation that yields a soft-

ware portfolio with the highest value among alternatives

can also be considered as the most preferable from a

financial point of view.[24] A comprehensive list of cost

estimation models can also be found at NASA’s Cost

Analysis Division.[82]

SOFTWARE MAINTENANCE TECHNIQUES

As presented in the sections above, software maintenance

is classified by three major types, namely, corrective, per-

fective, and adaptive maintenance. In this section, we pre-

sent some of the most frequently used software

maintenance techniques per maintenance type. In the area

of corrective maintenance we discuss techniques that are

applied at different levels of software abstraction and

granularity and deal with architectural mismatch repairs,

component restructuring, fixing software errors, and iden-

tifying possible causes of failures. In the area of perfective

maintenance, we discuss techniques that deal with enhan-

cing a system with new functionality, performing software

refactorings, andmerging software components. Finally, in

the area of adaptive maintenance, we discuss techniques

that deal with synchronizing business processes with run

time applications that implement these processes source

code, migrating components to Network-Centric environ-

ments, and transliterating software systems to new

languages.

Corrective Maintenance

Corrective maintenance is focusing on the application of

techniques for understanding, fixing, or remediating pro-

blems in the source code or the design of a software system.

Corrective maintenance can be thought of as encompassing

two phases. The first phase deals with the identification of

the fault, or what is also referred to as root cause analysis

(RCA). The second phase deals with the correction of the

Techniques for Software Maintenance 11

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

problem. Unfortunately, there are no prescribed ways to

fixing faults as every case is different. However, we could

consider frameworks and tools that could assist these fault

identification and correction tasks. In this section, we dis-

cuss three types of techniques, namely, architecture recon-

struction and repair techniques, techniques for the

identification of inconsistencies between requirements

and run time applications, and environments that assist

the identification and correction of software faults.

Architecture reconstruction and repair

The laws of evolution presented by Lehman imply that a

system as it is being maintained evolves constantly.

Furthermore, as time goes by, its design and architecture

gradually erodes. There is a point in time where the system

becomes so brittle and inflexible that even simple main-

tenance tasks are difficult to perform. At this point, one

could consider applying corrective maintenance techni-

ques that aim first, to reconstruct or extract the architecture

of a system and second, to repair the architecture.

Reconstruction takes the form of identifying components

in terms of collections of functions, data types, and vari-

ables. The identified components should contain entities

that exhibit high level of cohesion and are related by strong

data and control dependencies. On the contrary, elements

that belong to different components should exhibit low

coupling. Architectural reconstruction can be achieved by

clustering algorithms that can be either unsupervised

(depend solely on the algorithm and the similarity dis-

tance)[83] or supervised (there are constraints and initial

conditions as to how the components look like).[50] The

intuition behind clustering techniques for architectural

reconstruction is that the software system can be repre-

sented at a high level of abstraction as a collection of

relations between software artifacts. An example of such

a relation is the “calls” relation between functions. Once a

collection of relation tuples is used to model the software

system at a higher level of abstraction, clustering techni-

ques can be applied to group together software artifacts

that have a high number or relations between them, while

as a group have minimal relations with other software

artifacts that belong to other groups. This is a way to

simulate a form of high cohesion and low coupling and

therefore assume that the resulting clusters may provide a

snapshot view of the as-currently-is system architecture.

Similarly, repair takes the form of identifying drifts

between the extracted or concrete architecture and the

conceptual or envisioned architecture. The concrete archi-

tecture depicts the actual interactions between the modules

as implemented in the source code. These module interac-

tions are based on dependencies between program entities

(e.g., functions, data types, and variables). The conceptual

architecture depicts the interactions we believe should

exist between the modules following design and other

domain-specific principles and information. Fig. 7 illus-

trates the architectural repair process based on the compar-

ison of the concrete and conceptual architecture of a

system. The new system yields a new concrete architecture

that is evaluated against properties, constraints, and invar-

iants stemming from the conceptual architecture of the

system.

In this context, architectural repair may take two forms:

forward architecture repair and backward architecture

repair.[61] Forward architecture repair means repairing the

concrete architecture to match the conceptual architecture.

Reverse architecture repair means repairing the conceptual

architecture to match the concrete architecture. This match

takes the form of reconciling the conceptual architecture

and the concrete architecture to minimize their anomalies.

For this reconciliation to be achieved, a number of trans-

formations can be considered. These transformations aim

to eliminate specific differences between the conceptual

and concrete architecture.[84,85] Depending on the differ-

ences we are interested in eliminating, transformations

may take the form of insertions, deletions, and modifica-

tions of components and connectors in the concrete archi-

tecture to match the conceptual or vice versa. The rationale

behind such repairs is to minimize structural and design

inconsistencies between what is implemented (concrete

architecture) vs. what should have been implemented (con-

ceptual architecture).

Identifying inconsistencies between requirements and
run time behavior

In many occasions, either due to prolonged maintenance or

due to erroneous design or implementation of a system, the

system does not deliver correctly its intended functionality

Fig. 7 Q18Architecture repair process.

12 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

as this is specified in its Software Requirements

Specification (SRS) documents.[86] In order to identify

whether the system delivers its intended functionality, we

need to consider techniques to track a system’s run time

behavior so as to detect deviations from its requirement

specification and identify parts of the system that may be

responsible for this deviation.[87] Approaches in this area

fall into three main categories: event-driven, goal-driven,

and pattern-driven.

Event-driven approaches model assumptions through

appropriate formalisms such as the Formal Language for

Expression Assumptions (FLEA) or through events that are

classified as satisfaction events or as denial events.[88] The

intuition behind these approaches is to attempt to formally

verify or deny such formal expressions that represent

assumptions related to specific functional or non-

functional system requirements by using information that

is collected as the system runs. More specifically, the

system is monitored and when an assumption is violated

or a denial event is observed the associated requirements

are considered to be in violation and remedial or mainte-

nance actions can be taken. A denial event or a violation of

an assumption is associated with the failure of a require-

ment and consequently with the potential failure of one or

more components.[89] Failure hypotheses are associated

with remedial actions through predefined requirement/

assumption/remedy tuples or through specialized types of

analysis such as obstacle analysis.

Goal-driven approaches utilize a model of the system

that describes the prerequisites for the system’s correct

operation in terms of an AND-OR goal tree or a goal

graph. The intuition behind these approaches is to attempt

to satisfy logical combinations of goals that have to be

achieved so that a specific functional or non-functional

system requirement can be met. The combinations of

these goals that need be satisfied can be collected from a

constraint satisfaction or a SAT solver given a collection of

goals in an AND-OR tree. When there is a mismatch

between the actual and expected behavior, then the sub-

goals that are associated with this behavior mismatch in the

goal tree are considered as potential root cause hypoth-

eses.[90] A problem solver (i.e., a propositional satisfiabil-

ity—SAT solver)[91] can be used to traverse the goal tree

and identify all the combinations of actions or other sub-

goals that may contribute to this mismatch between the

expected and observed system behavior.[92]

Pattern-driven approaches model requirement failures

as patterns specified in a pattern language. The intuition

behind these approaches is to identify through pattern

matching abnormal sequences of events that are inter-

leaved with normal events as the system runs. The abnor-

mal sequences of events are usually associated with

different types of possible system failures, attacks, and

threats, and are usually modeled as patterns in a pattern

language. These patterns are matched against the events

that are collected as the system operates. If a pattern is

observed, the associated failures and threats are then con-

sidered as initial root cause hypotheses. The requirement

violations/threats can be associated with components or

with remedy actions through prespecified condition-action

rules, or tuples.[93]

Fixing faults

When a system operates it is possible at some particular

point in time that a fault or bug in the code will be trig-

gered. This fault in the code may be harmless or may

trigger an error. An error is defined as the situation in

which a system enters a state that is different from the

one that is specified. An error may also be harmless or be

remediated through exception handling mechanisms so

that the user may not even be alerted or may not notice

that something went wrong. However, there are situations

where errors result in failures. A failure is defined as the

situation where the observed behavior of a system is dif-

ferent than the one specified and from the one the user is

expecting to observe. One part of corrective maintenance is

identifying, tracing, and correcting faults in the code or the

configuration of a system once a failure has been observed.

The software community has proposed over the years a

number of techniques for making the task of fault identifi-

cation easier[94] once a failure is observed. These techni-

ques include static code analysis, identification and

interpretation of antipatterns,[95] as well as tools and tech-

niques to perform historical analysis, bug tracking, and

software evolution analysis.[96,97] Static code analysis

techniques rely on the analysis of the source code of a

system in order to infer characteristics of the program

that may lead to unsafe array, garbage collection, or pointer

operations. A common technique for these tools is to use

symbolic execution and path simulation[98] where program

execution paths are simulated using symbolic variables to

determine if any software errors could occur. Another

static code analysis technique for bug detection is the

identification of source code patterns that match known

bug patterns.[99] These systems first construct an abstract

model of the source code being analyzed and then attempt

to match these abstract models against predefined error

patterns. Most of these systems are customizable in the

sense the users can add their own patterns utilizing a tool-

specific formalism. A variation of the above approach is

based on the identification of antipatterns and the identifi-

cation of code “bad smells.” Antipatterns are design pat-

terns that are commonly used but are ineffective and

counterproductive.[100] Similarly, “bad-smells” are bad

design and bad programming implementation patterns

that are proven to cause problems related to the perfor-

mance, reliability, maintainability, and robustness of a

software system.[101] Software evolution history analysis

tools can also be used to examine information relevant to

the evolution of a system, to investigate the rationale

behind applied changes and past maintenance operations,

Techniques for Software Maintenance 13

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

and also to store metrics such as complexity metrics, main-

tainability metrics, failure intensity metrics, and cumula-

tive failure counts. These systems can also be used to

associate functional and non-functional requirements

with particular components of the system or configuration

constraints.[92] Bug tracking systems also play an impor-

tant role in tracing faults in the code. These systems keep

information on open or already remedied faults as well as

information on whom and how worked to remedy the faultQ6 .

These systems not only help software maintainers to focus

their attention on a particular component when a failure is

observed, but also help users to understand dependencies

between system elements. Finally, versioning systems play

an important role in understanding how one system version

differs from its previous version. In addition to providing

the ability to roll back to previous versions, versioning

systems also assist maintainers for associating failures

with components, as in most cases failures occur due to a

previous change, maintenance operation, or alteration in

the computing environment or configuration parameters.

Finally, another aspect of corrective maintenance is the

need for an infrastructure to assist software maintainers to

perform both regression testing once an error is fixed and to

perform reliability analysis during and after regression

testing runs.[21,56] More specifically, performing regres-

sion testing after a maintenance operation has been applied

is always important and required. Just passing the pre-

scribed regression tests may not be adequate especially

for mission-critical systems. What is also needed is the

analysis of the reliability of the system by the utilization

of reliability growth models. In this respect, the failure

intensity of a system is measured every time after a test

suite is applied and an error has been discovered and fixed.

Regression testing, integration testing, and system testing

should be kept on being applied up to a point where the

failure intensity of a system measured in failures per CPU

hour of operation falls below a prescribed level. Reliability

growth models can be used to predict how many hours of

testing are still required for the failure intensity of a system

to drop below a specified value.[21] As an example, con-

sider that for some mission-critical systems it has been

reported failure intensity rates of 0.1 to approximately 5.5

failures per thousand CPU hours of operation. Depending

on the criticality of the mission and the potential impact of

a failure (loss of life, financial loss, bad publicity, or mere

inconvenience), the guidelines and the acceptable maxi-

mum tolerable value may vary.

Perfective Maintenance

Perfective maintenance aims to apply changes in the sys-

tem in order to increase some of its functional and some of

its non-functional quality characteristics. Examples of per-

fective maintenance operations that deal with the func-

tional characteristics of a software system include adding

new functionality, while examples of perfective

maintenance affecting the system’s quality characteristics

include increasing its maintainability, extensibility, port-

ability, security, reliability, and usability. In this section,

we focus on some of the most frequently used perfective

maintenance techniques that are related to adding new

functionality to a software system, merging software com-

ponents to yield a new component, and refactoring a com-

ponent or a system to increase some of its quality

characteristics.

Adding new functionality

Adding new functionality to a system may take various

forms. One form is to integrate the system with other

components or applications at the architecture level.

Another form is to adapt or extend its source code at the

component or class level so that new functionality can be

added through specific design patterns. Depending on the

level of abstraction and granularity these maintenance

operations are applied on, we can differentiate between

architecture-level changes and source code-level changes.

At the architecture level, we consider architectural pat-

terns that allow the integration of a system with other

systems. The use of facades and wrappers[102] can be

used to facilitate the addition of new functionality in the

system by integrating the system with other components

and applications at the architecture level. Such wrapper

components provide standard utility services such as trans-

action management, message mediation, authentication,

access control policies, encryption, etc. In the software

engineering literature there are a number of architecture

level patterns that have been proposed for extending in a

proper way the functionality of a system by altering

parts of its design at the architecture level. These include

Data Source Architectural Patterns, Object-Relational

Structural Patterns, Object-Relational Patterns, Distribution

and Concurrency Patterns, and Session State Patterns.

A collection of architecture-level patterns can be found in

Refs. [103] and [104]. Yet another architectural-level tech-

nique that is used to integrate systems with other applica-

tions, thus extending the functionality and capabilities of

such systems, is the use of Enterprise Service Bus (ESB).

The ESB is an architectural abstraction that is usually

implemented utilizing middleware technologies and pro-

vides fundamental system integration services such as data

and protocol mediation as well as message and event

processing.[105] Fig. 8 illustrates the deployment and use

of a typical enterprise bus. The ESB provides a wealth of

infrastructure services such as message queuing, message

routing, message mediation, interface adaptation, logging,

monitoring, and security. To date ESB is the dominant

commercial choice for system integration and

interoperability.

At the source code or at class level the addition of new

functionality can be achieved in various ways. One way is

the addition of new methods to a class or the addition of

14 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

new classes to a package. This is a technique that requires

care, as maintainers have to make sure that key architec-

tural constraints are not violated (e.g., violation of design

invariants); the enhanced class or the enhanced component

remains cohesive (e.g., new functions operate on same type

of data and deliver related to the class/component function-

ality); there are no side effects while extending the class or

the components (e.g., files, databases, resources, or critical

regions) are accessed without proper permissions and

locks; and the enhanced class or the enhanced component

maintain a low level of coupling with the other components

(e.g., no unnecessary interfaces are exposed and no data are

accessed without the proper use of interfaces). Another

method is the use of appropriate design patterns such as

the adapter, decorator, proxy, state, and factory

method.[106] The use of such design patterns assumes that

we have access to the source code and it can be achieved

via the use of refactorings and program transformations.

Software merging

In some cases, an application is developed as a result of

merging source code of two or more existing systems. This

merging phenomenon is also a very common issue when a

large software system is developed by many groups that

have to merge their components to form the final product.

Software merging is also a common issue in product-line

type of software development where software versions

with possibly common ancestors are merged to form new

versions or new products.[107] In this respect, we can con-

sider software merging as a form of customization and an

important part of Perfective Software Maintenance. In

practice, software merging is handled by tools that support

collaborative software development, and software config-

uration management. These tools aim to address the issue

in a tractable and decidable way by limiting the scope of

merging, the programming languages supported, and the

type of artifacts that can be merged. In general, software

merging techniques can be classified as two-way or three-

way merging techniques. Two-way merging deals with

techniques that attempt to merge two versions of a soft-

ware artifact without relying on the common ancestor

from which the two versions originate. Three-way mer-

ging deals with techniques that allow for information in

the common ancestor to be used during the merge process.

Orthogonal to the classification of two-way and three-way

merging, software merging techniques can be further clas-

sified as textual, syntactic, semantic, and structural.

Textual merging techniques consider source code files

purely as text files, and merging takes the form of appro-

priately merging source code files line by line (line-based

merging). Syntactic merging techniques omit unnecessary

textual details between the two files that are to be merged,

and it will consider that two artifacts cannot be merged

only if they produce a non-syntactically valid result.

Depending on the data structures used to model the source

code, syntactic-based merging can be further classified as

tree-based or graph-based. Semantic merging deals with

techniques that aim to detect situations where the resulting

program is not semantically correct, such as having unde-

clared variables (static semantic conflicts) or is executing

the wrong version of a function (run time semantic con-

flicts). Finally, structural merging deals with situations

where one or both of the versions to be merged have

been produced as a result of refactoring operations. The

problem arises when the two versions are merged and we

cannot decide which of the refactoring operations can be

valid in the new merged version. Structural merging is an

area for which more research is still needed. A complete

survey of software merging techniques can be found in

Ref. [108].

Software refactoring

Software refactoring refers to source code transformations

that aim to improve the quality of the system without

altering its behavior characteristics. Even though refactor-

ing operations do not fix errors or add any new function-

ality, they facilitate the understandability, maintainability,

and extensibility of the code.[109] Examples of refactoring

include the transformation of source code within a block

into a subroutine, moving a method or an attribute to a

more appropriate class, or create more general types to take

advantage of class inheritance in Object-Oriented systems.

Fig. 8 Q18Schematic of an Enterprise Service

Bus.

Techniques for Software Maintenance 15

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Fig. 9 illustrates a refactoring operation[109] where a public

class attribute becomes private and accessor and mutator

methods are added. At the source code level, refactoring

takes the form of source code transformations so that

design patterns can be introduced and antipatterns be

removed. In the related software engineering literature, a

number of different standard refactoring transformations

and a number of to-be-avoided practices (antipatterns)

have been proposed.[95] These catalogs discuss in detail

the different types of transformations, their anticipated

effects on system quality, and the conditions under which

these refactoring operations can be applied or antipatterns

canQ7 be recognized. Refactoring operations on the source

code can be automated to a large extent.[62] These opera-

tions focus on raising the level of abstraction so that the

system can be more extensible; decomposing the code into

more manageable logical units so that the system compo-

nents and code can be more maintainable and reusable; and

improving coding standards (e.g., variable renaming, mov-

ing methods, and altering hierarchies) so that the system is

easier to understand and modify.

Refactoring operations do not only apply at the source

code level of a system but may also apply at the business,

architecture, and data levels. At the business level, refac-

toring takes the form of altering the workflows or business

processes in order to introduce proven patterns than can be

used to increase throughput, decrease cost, or positively

affect KPIs of interest.[110] At the architecture level, refac-

toring takes the form of component restructuring or the

introduction of new components or the integration of the

old system with other applications. Usually the objective is

to enhance some non-functional and quality characteristics

of a system. For example, the objective of architecture

refactoring may be to make the system more secure, exten-

sible, robust, or maintainable. At the data level, refactoring

operations aim to reorganize the data schema of an

application so that the data schema can be more maintain-

able and more extensible.

Adaptive Maintenance

Adaptive maintenance techniques allow for the migration,

porting, and integration of software systems to new plat-

forms, languages, environments, and third-party applica-

tions. Adaptive maintenance may take several forms. In

this section, we discuss techniques that deal with three of

the most often utilized maintenance scenarios, namely,

synchronizing business processes and workflows with run

time applications that implement these processes and

workflows, migrating software systems to Object-

Oriented, Network-Centric, and Service-Oriented environ-

ments, and finally migrating legacy components to new

languages. Adaptive maintenance is an important part of

the software life cycle as it allows for the system to remain

operational when the underlying platforms or the operating

environments change. A typical example of adaptive main-

tenance is when parts of the functionality of a legacy

system need to be exposed as services (e.g., Web services)

to other applications or users. The sections below discuss

some of the most often occurring scenarios and techniques

of adaptive maintenance.

Synchronizing business processes with
run time applications

Software evolves in iterative and incremental steps from its

inception to its retirement. The evolution includes change

of artifacts at different levels of abstraction, from very

abstract ones, such as business process specifications, to

very concrete ones, such as source code. A perfective or

corrective maintenance operation such as the addition of a

new class could directly affect architecture and design

Fig. 9 Q18Sample refactoring operation

for the replacement of public data fields.

16 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

models, and through ripple effects, even the requirements

specification and the business process models of this sys-

tem.[111] If each model change is not propagated to all

affected models and if changes that are performed in par-

allel are not coordinated, consistency among artifacts is lost

and semantic drift is created.[112–114] In this context, adap-

tive maintenance may take the form of propagating and

synchronizing software models that pertain to different

levels of abstraction and used by different stakeholders.

This problem is referred to as model synchronization or

model coevolution.[115] The solution here is to analyze the

code so that an activity type of diagram can be compiled.[116]

Such an activity type of diagram will identify for each use

case of the system, the related operations, the sequence, and

the conditions under which these operations are invoked and

the data exchanged between these operations. These models

can be created by static code analysis, dynamic analysis, or a

combination of both.[117] On the other hand, business pro-

cesses that implement specific system scenarios should be

analyzed and annotated with information regarding the type

of data exchanged between the various business process

steps; the roles and constraints of each process step; and

task descriptions. The intuition behind the analysis and

abstraction of the source code with the concurrent annota-

tion of the business processes is to bring source code models

and business process models closer so that they can be

compared and reconciled. Fig. 10 illustrates the concept of

bridging the conceptual gap between high-level business

process models and the system’s source code. This conver-

gence allows for comparisons to be applied in a more

efficient and meaningful manner.

Reconciling annotated business process models with

source code models takes the form of identifying differ-

ences and similarities between these models. In this respect

a number of techniques have been proposed that fall in the

general area of model dependence extraction. These tech-

niques include formal concept analysis (FCA) and feature

modeling.[118,119]

Migrating to Network-Centric
Service-Oriented environments

The rapid development of new technologies in the area of

Object-Oriented systems and Service-Oriented computing

over the past few years necessitated the migration and

porting of many corporate legacy applications to

Network-Centric environments. This migration may take

several forms. One form is wrapping, where legacy com-

ponents are interfaced or wrapped with components that

are responsible for exposing the original legacy interfaces

to third-party components over standard application proto-

cols such as http, SOAP, or RMI. Another form is the

utilization of a framework such a Object Request Broker

(ORB) to allow invocations of native legacy code from

remote components written even in a different language

than the legacy component being invoked.

Wrapping is a technique based on the creation of new

components that provide bidirectional communication

between the legacy component and third-party remote

components. In one direction these components offer glob-

ally visible interfaces to third-party external client compo-

nents. These globally visible interfaces implement native

calls to the legacy component that is being invoked. In this

respect, the clients do not need to know how the legacy

component is invoked, and the only information they need

to know is the visible interface offered by the wrapper

component. Furthermore, these wrapper components

offer through a specific application and transport layer

protocol results back to the requesting client. The migra-

tion through wrapping can be achieved through different

strategies.[102] These include the use of middleware frame-

works such as Java Enterprise Edition JEE5 and Enterprise

Java Beans, the use of Extensible Markup Language

(XML) wrappers, and the use of proxy components to

wrap components and dispatch client’s requests to native

legacy system calls. The intuition behind the wrapping

approach is that the legacy components are minimally

altered if any way at all. The wrapping approach provides

a reduced migration risk and effort. On the other hand,

legacy components are treated often as “black boxes” and

there is no deeper understanding of the inner workings of

the components to facilitate future evolution. Fig. 11 illus-

trates such a wrapping scenario for the exposure of legacy

code, User Interface (UI) screens, and legacy data as ser-

vice resources, to client and third-party applications.

In this context, we can differentiate between three major

strategy types for migrating a legacy component to a

Network-Centric environment. These can be qualified as

the black box, the gray box, and the white box strategy.

In the black box strategy, we have access only to the UI

of the system. Techniques like screen scraping or dialogue

tracing can be used to provide a façade component (the

wrapper) that invokes the sameUI entities through program-

matic and not through user-drivenmanual means.[120] In this

approach, we do not have any access to the code, and we
Fig. 10Q18 Bridging the conceptual gap between business

processes and source code.

Techniques for Software Maintenance 17

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

focus only on exposing the UI functionality through such a

façade component that simulates the original UI. The benefit

on this approach is that it does not require any analysis of the

source code of the system and therefore it is easier, faster,

and most economic. The drawback of this approach is that

any problems of the legacy system remain hidden and many

consider it as an approach where sooner or later any quality

problems of the legacy system will eventually surface and

the source code analysis will be inevitable. The intuition

behind this strategy is that it requires minimal access to the

legacy component and has the potential to minimize cost

and effort during the migration process.

The gray box strategy assumes that we have some

minimal access to the source code of the system. The

strategy utilizes an approach that has three major steps. In

the first step the system is analyzed using static and

dynamic analysis techniques so that the system is broken

down to a collection of components that offer specific

functionalities.[121–123] The second step is to identify the

dependencies of each component with all other compo-

nents that make up the system, and model the signatures

of the interfaces of the components we want to expose to

third-party clients. The third step is to create wrapper

components that allow for the remote client components

to access the legacy components.[124] The benefit of the

approach is that it decomposes the legacy system and

provides a level of understanding of its inner workings.

Another benefit is that the extracted components can be

considered as reusable assets that can be utilized in other

applications as well. The drawback of the approach is that

it requires some level of analysis of the source code and the

extraction of dependencies between the extracted compo-

nents. These dependencies may be very obscure and diffi-

cult to extract and therefore, if these dependencies are not

fully revealed, there is the possibility that there may be

unforeseen side effects when a component is invoked by a

third-party external client component. An example could

be that external client components may be accessing secure

internal databases or updating a database without the

proper locking mechanisms. The intuition behind this strat-

egy is to identify reusable assets that can be used as stand-

alone components to form assembly elements of new sys-

tems and applications in an organization. In this respect,

componentization and access of legacy functionality can

be done at a finer level of granularity.

The white box strategy is based on the assumption that

we have full access to the source code and it is also based

on three steps. In the first step we analyze the legacy source

code and we extract an object model. Complex data struc-

tures become class types and functions that utilize such

data types become methods to the classes generated by the

data types. This is a complex process and is referred to as

objectification of the legacy code. The second step is the

automatic generation of Object-Oriented source code from

the extracted object model. This is a step that can be

automated especially if the target Object-Oriented lan-

guage shares common features with the legacy source

language (e.g., C to Cþþ). The automatic generation of

Fig. 11Q18 System integration using wrapping technology.

18 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

the target Object-Oriented source code may be more chal-

lenging if the source and target language do not share many

common features (e.g., Fortran to Java). The third step is

the use of a middleware framework or the creation of

wrapper components that allow the access of methods of

individual objects from remote clients. The intuition

behind the white box approach is that migration to

Network-Centric environments is best done when the

source code has been analyzed and restructured so that

legacy functionality is encapsulated in classes and selec-

tively exposed in the form of methods. In this respect, the

benefit of the white box approach is that it decomposes the

legacy application in a very fine level of granularity, thus

extending the understanding we have on the business logic

encapsulated in the system. This also allows for individual

classes and consequently individual objects to be used

from external applications as reusable assets. The draw-

back of the approach is that it requires significant invest-

ment in time, effort, and funds to extract an accurate object

model from the legacy system and generate new Object-

Oriented code. Another drawback is that the original

design of the system may be lost and that may create

maintainability problems with the staff that is familiar

with the old original structure of the system.[53] Fig. 12

illustrates sample transformations to migrate procedural C

code to Object-Oriented Cþþ code. The first and second

transformations illustrate how type definitions and struc-

tures can be mapped into classes. The third transformation

illustrates how C functions can be mapped to methods. In

this particular example the return data type and the para-

meter data type of the original C function are considered to

allocate the function as a method to the class that stems

from this data type (second transformation).

Once the functionality of a legacy component has

become available to remote clients as a service, we can

then utilize a number of architectural styles and frame-

works to integrate it with other systems and compo-

nents.[125] The most relevant architectural styles are the

layered architecture style and in particular the three-tier

architectural style and the implicit invocation style such as

the Model-View-Controller and the Event Driven

Architecture (EDA) style.

Regardless of the strategy used, these recent advances in

software engineering technology allow for various levels

of wrapping and mediation to take place in large systems,

and middleware frameworks also allow for the seamless

access of legacy components or objects in a secure way and

with robust transaction management policies from remote

clients. In this way, the level of granularity can be arbitra-

rily raised and wrappers can be further wrapped, compo-

nents can interface with other components, applications,

and databases through mediators, and so on, thus building

what is known as Systems of Systems (SoS) or Ultra Large

Scale Systems (ULS).[126] ESB technology and Publish/

Subscribe protocols can be used to create such large cor-

porate systems by integrating diverse applications, compo-

nents, and data sources in one seamless environment.[103,127]

Fig. 13 illustrates an example three-tier architecture (client

side, server side, legacy systems) that is based on the JEE

framework and can be used to expose legacy components

as services to remote clients.

Migrating to new languages

In many occasions, adaptive maintenance takes the form of

migration of a system to a new programming language.

Fig. 12 Q18Sample migration from procedural to

Object-Oriented code.

Techniques for Software Maintenance 19

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

This may be required for several reasons. The most com-

mon reasons include the lack of development, debugging,

and testing tools for the old language, the lack of a compi-

ler that runs on modern platforms for the old language, the

lack of common libraries for the old language, or even the

lack of developers who are familiar with the old language.

Migration to a new language usually takes the form of

transliteration where we transform a system written in

one language to another but without changing the under-

lying programming paradigm (e.g., from Fortran to C).

Less frequently, migration takes the form of transforming

a system from one language to another new language in a

new programming paradigm (e.g., from imperative to

Object-Oriented such as from C to Cþþ). Regardless of

the form and type of migration, at the core there is what is

referred to as program transformation technology. In this

section we focus on classifying and discussing a number of

generic source code transformation techniques that fall in

two main categories of transformations. The first category

is referred to as Model-to-Text transformations. The sec-

ond is referred to as Model-to-Model transformations.[128]

Model-to-Text-based migration is based on two steps.

In the first step, a model of the source code is built. This

model is usually the Annotated AST of the source code

being migrated. The model is usually represented as a

complex data structure in dynamic memory and can be

persistently stored if needed in an Object-Oriented or rela-

tional database. In the second step, a transformer guided by

a transformation control strategy uses the model to gener-

ate the text of the source code of the new migrant system.

In the related literature, the approaches to generate the

target program’s source code text have been classified

into two categories, namely, visitor-based approaches

and template-based approaches. In the visitor-based

approaches, a visitor mechanism (e.g., the visitor design

pattern) is used to traverse the source model (i.e., the

Annotated AST of the source system) and to generate the

appropriate target text (i.e., the target source code for the

migrant system). The template-based approach is based on

collections of templates that represent the target text con-

taining splices of metacode to access the source model and

to perform code selection and iterative expansion. These

templates form the right-hand side (RHS) of transforma-

tion rules. The left-hand side (LHS) of these rules imple-

ments logic that accesses the source model and provides

data to variables and metacode in the RHS templates. The

result of the rule application is the instantiation of the RHS

templates to form syntactically valid text that corresponds

to the source code of the target migrant system. The intui-

tion behind this approach is to avoid maintaining more than

one abstraction models (i.e., one source model of the ori-

ginal system and one abstract model of the migrant system)

Fig. 13 Q18Block diagram of a

typical three-tier Network-Centric

architecture.

20 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

and be able to immediately generate source code text

directly from the abstraction models that represent and

denote the original legacy system. In this respect, the

benefits of this approach are twofold. First, it does not

require the additional complexity of maintaining one

source and one target model, thus eliminating the need to

define and validate such a target model. Second, it allows

for the direct validation of the transformation rules by

inspecting the source code as this is directly emitted from

the transformer.

Model-to-Model approaches are based on transformers

that are applied to a source model (e.g., the Annotated

AST) and yield another model that is then used to generate

code for the new migrant system. The target model is

usually the Annotated AST of the target system. A pretty

printer can then be used to generate the target source code.

In this respect, Model-to-Model transformations are in fact

tree transformations. The frameworks that support such

Model-to-Model transformations fall into four main cate-

gories, namely, direct manipulation, staged structure-

driven, template-based, and graph transformation-based

frameworks. The direct manipulation Model-to-Model

transformation frameworks offer an application program-

ming interface (API)Q8 and a corresponding programming

language to manipulate the source models through custom

user-defined transformation programs written in the pro-

gramming language offered by the framework (Lisp, Java,

etc.). The staged structure-driven frameworks operate in

two steps. In the first step, the skeleton of the target model

is created. In the second step, the skeleton target model is

filled or instantiated by setting values for attributes and

linking various model references. The template-based fra-

meworks utilize template models that contain annotations

in the form of metacode or constraints. An application

program that implements a control strategy instantiates

the template model to yield a concrete model that in turn

is used to generate the target source code. The graph

transformation-based approach utilizes a graph transfor-

mation language to transform the source model to a target

model. Triple Graph Grammars and Attributed Graph

Grammars constitute the theoretical framework for these

types of transformers. The intuition behind the Model-to-

Model approaches is that it allows for different versions of

the same target system to be generated from a common

target model. This common target model is generated by

the source model that is an abstraction of the original

source code. Once such a target model is created, custo-

mized fine-tuned transformers can be used to generate

different versions of the target source code (e.g., from

PL/I to Fortran 95, or to Fortran 2003).

Source code migration has been successfully used for

migrating large programs written from one language ver-

sion to another version, programs written in imperative

languages (such as PL/I) to other imperative languages

such as C, or programs written from one language in one

programming paradigm to another language in another

programming paradigm such as C to Java.[129, 130] Fig. 14

below illustrates two examples of PL/I-like code segments

automatically migrated to equivalent C code. Equivalence

here is evaluated by ensuring that the external system

behavior of the migrant system is the same as the one of

the original system.

Concluding this section, it is important to mention two

points of interest. One is that migration and transliteration

do not need to be complete (i.e., produce a fully working

system automatically) for the migration to be successful.

The strength of the automated approaches is that they allow

for the mechanic, uniform, consistent, and fast transforma-

tion of the bulk of the system (e.g., 95% of the code). There

could be a small part of the generated target system code

that is either not syntactically correct or has some semantic

errors. These can be revealed by testing (unit, system,

functional testing) and the assessment of the reliability of

the system using appropriate reliability growth models.

Automatic transliterators can generate more that 95% of

the original code to the new code. This is a major step as it

reduces the migration time and possible manual rewriting

errors. The second point has to do with the need for rerest-

ing the newmigrant system tomake sure that the functional

and non-functional requirements for the migrant system

indeed hold. Experience shows that this testing phase is

probably the most time consuming and expensive in the

whole process and should not be underestimated.

TOOLS, FRAMEWORKS, AND PROCESSES

Tools

Software maintenance for large systems without the use of

specialized tools would not be possible due to the complex-

ity of the task and due to the size of the source code usually

involved. Furthermore, many maintenance tasks would be

error prone if performed manually. Tools automate many

tedious and repetitive tasks and therefore eliminate the

problem or human errors. Examples include repeated trans-

formations, metrics calculation, as well as the extraction of

data and control flow dependencies between source code

statements or between components. In this respect, there

are many tools that have been proposed by the industry and

the academia. The implementation view of the architecture

of these tools may vary. For example, these may have been

implemented using a combination of a pipe and filter

architectural style, blackboard style, or an implicit invoca-

tion style.[103] However, regardless of the implementation

view of the architecture, most tools share a common con-

ceptual architecture. This conceptual architecture is com-

posed of components such as the front-end component that

allows for parsing the code; the source code repository

component that stores in dynamic memory or in persistent

storage the source code model (i.e., the AST); and a num-

ber of plug-in components that allow for the analysis and

Techniques for Software Maintenance 21

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

manipulation of the source code model. Fig. 15 illustrates

the conceptual architecture of most source code analysis

tools. Examples of tools that have been extensively used in

the industry and academia include the Rigi[34] and

Landscape,[131] and tools that have been developed as

research prototypes but have also been extensively used

in the industry are the CIA,[35] Genoa,[132] TXL,[133]

Columbus,[134] and Bauhaus tools.[135] Finally, in the area

of visualization, tools such as Dotty, Shrimp, and

Landscape have been extensively used for visualizing var-

ious software models. These tools provide a basic list of

what is available for software maintenance. Elaborate lists

of tools and sites related to software maintenance can also

be found in many research sites.[136] Also, prototype tools

are regularly demonstrated at related international IEEE

and ACM conferences such as the IEEE/ACM

International Conference on Software Engineering

(ICSE), the IEEE International Conference on Software

Maintenance (ICSM), the IEEE Working Conference on

Reverse Engineering (WCRE), the IEEE International

Conference on Program Comprehension (ICPC), and the

IEEE Conference on Software Maintenance and

Reengineering (CSMR).

Frameworks

So far, there have been several frameworks and metamo-

deling languages proposed by different communities. The

OMG in a breakthrough proposal defined a core metamo-

deling language called Meta Object Facility (MOF) that is

based on modeling domains and specifying schemas using

classes, associations, and inheritance. The simplicity and

Fig. 14Q18 Transliteration example of PL/I-like source code to C source code.

22 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

power of this language allows for software engineers to

model the schema of various other modeling languages

including UML itself. The interesting dimension is that

once a schema has been designed as a MOF model, OMG

has defined a standard, called eXtensible Metadata

Interchange (XMI), which allows for such MOF models

to be represented as XML schemas. This has interesting

implications because once a MOF model is instantiated to

form a concrete model, then this concrete model can be

represented again through XMI as an XML document that

complies with the XML schema that stems from the

domain model’s schema. Once this XML document that

describes the concrete model is available, it can then be fed

along with its corresponding XML schema to frameworks

such as the Eclipse Modeling Framework (EMF). The

EMF framework then automatically generates a data struc-

ture, representing as Java objects in dynamic memory the

XML document that corresponds to the concrete MOF

model and provides an API for accessing and manipulating

these objects. Also, transformers can be used to transform

one EMF model that is compliant to one schema to another

EMF model that is compliant to another schema. Such

transformers include Atlas Transformation Language

(ATL), Attribute-Graph-Grammar System (AGG), and

MTF. The impact of the above is that it allows for the

development of tools that manipulate models that now

are stored as objects in dynamic memory and not as just

plain graphs and images. These tools can perform analysis

of models, transformations of models, and generation of

source code for a new migrant system.

In EMF, MOF follows a multilayer architecture by

gradually evolving and extending the metamodeling ele-

ments in different levels. An advantage of such approach is

that it makes it easier to select a subset of the language for

applications that do not require the entire features of the

language. Essential MOF (EMOF) is extended by

Complete MOF (CMOF), which provides a more compre-

hensive set of modeling features. EMF is another such

modeling facility proposed by the Eclipse community.

With respect to transformation languages, Query-View-

Transformation, also referred as QVT, provides means

for the algorithmic specification of model transformations,

pattern matching, traceability, and support for incremental

and bidirectional model updates.

As an example of how the above technologies relate to

software maintenance, consider the following scenario

where a software engineer defines a domain model

(a schema) for the AST of a given language (see Program

Representation Q9). This schema can be then represented as a

MOF model. A parser can be used to parse the source code

of the system being maintained and instantiate this MOF

model to create a concrete AST for a given code fragment

or the complete system in EMF. This concrete model is

essentially a model of the source code of the system and

can be analyzed (e.g., compute metrics, identify refactor-

ing operations, and identify dead code) or transformed to

yield a new updated source code model. Such model trans-

formation can be achieved using a transformation language

such as QVT, ATL, or AGG. This type of maintenance

relates to Model-to-Text and Model-to-Model approaches

described earlier.

Finally, some commercial tools that facilitate software

development and maintenance include the IBM Rational

Software Architect, the Poseidon UML framework, and the

StarUML framework, where software engineers can use

these to perform reverse or forward engineering. In the

reverse engineering mode one can extract class diagrams

from existing source code. In the forward engineering

mode one could export source code models (use cases,

class diagrams, sequence diagrams, ASTs) through the

XMI standard to EMF compliant models for further pro-

cessing and transformation from within the EMF

environment.

Processes

Software maintenance is a complex, expensive, and time-

consuming task that encompasses several risks. As such, it

must be planned and organized carefully in a methodolo-

gical and structured way. At the beginning of this entry, we

discussed generic processes for software maintenance.

Even though these processes are helpful for understanding

the issues and for planning the activities related to software

maintenance tasks, they do not provide much of practical

benefit unless they are associated with some concrete

application guidelines. These guidelines are provided in

the form of handbooks and methodologies that allow soft-

ware maintainers to select, plan, design, implement, and

evaluate various maintenance activities. In this context, we

discuss two of the most frequently used process methodol-

ogies for software maintenance, namely, the Software

Reengineering Assessment (SRA) and the Service

Migration and Reuse Technique (SMART).

The SRA methodology is a concrete process methodol-

ogy proposed by the U.S. Air Force Software Technology

Group. The SRA assumes a limited budget and availability

of resources as compared to the large software portfolio of

an organization. The objective of SRA is to provide a

structured methodology for assessing maintenance options

and proposing alternatives. SRA is structured around three

phases: the technical assessment, the economic assess-

ment, and the management evaluation. In the first phase,

the software portfolio of an organization is assessed from a

Fig. 15Q18 Conceptual architecture of software analysis tools.

Techniques for Software Maintenance 23

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

technical standpoint. For each system, different mainte-

nance techniques are considered and evaluated with

respect to its technical merit, impact, risk, and feasibility.

The result of the technical assessment phase is a list of

systems that must be considered for maintenance along

with a list of maintenance options for each such system.

The economic assessment evaluates each maintenance

option proposed by the technical assessment from a finan-

cial point of view. The options are ranked based on their

corresponding Benefit to Investment RatioQ10 and their NPV.

The systems and the corresponding maintenance options

with the highest NPV and BIR indicators are evaluated

jointly by the technical assessment team, the economic

analysis team, and the management team.[24] The systems

and the maintenance options that are selected from this

joint evaluation are the ones that will be chosen for

maintenance.

Another methodology is the SMART that has been

developed by the Software Engineering Institute at

Carnegie Mellon University. SMART is a technique that

can be used to make initial decisions about the feasibility

of reusing legacy components as services within an

SOA environment. Fig. 16 illustrates the basic tasks of the

SMART process.[137] SMART operates in three phases.

The first phase is the planning phase where the methodol-

ogy provides a structured way to gather a wide range of

information about legacy components, the target SOA, and

potential services. The information is collected using a

methodology referred to as the Service Migration

Interview Guide (SMIG). The SMIG directs information

gathering for establishing the migration context; for

describing and assessing the existing capability, that is,

the data about the legacy components from the identified

stakeholders; and for describing the target SOA state, that

is, the data and information for the target SOA system. The

second phase is the GAP analysis to understand the differ-

ences between the current state of the system and the future

planned state of the new SOA system. Once this analysis

has been performed, the methodology proceeds in the third

phase. The third phase is the strategy determination phase

where the methodology assists software maintainers to

produce a service migration strategy as the primary product

as well as other information related to the state of the

legacy system. SMART[26] is also implemented as a tool

that allows developers to gather and organize the data

required so that informed decisions can be made.

EMERGING TRENDS

As software technologies, programming languages, utility

frameworks, computing platforms, and environments

evolve at a rapid pace, software maintenance practices

must evolve too. In this section, we discuss some of the

emerging trends in software engineering that have a direct

impact on software maintenance practices. We classify

these emerging trends in eight categories, namely, pro-

cesses, modeling, transformations, evaluation, software

visualization, open source, mining software repositories,

and SoS.

Processes: Until recently, the majority of software

development processes focused on collections of specifi-

cations and plans that must be completed before any design

or implementation activity starts. These are quite rigid

models since they do not allow for any prototypes or

implementations to be shared with the end user, until the

final release of the system for acceptance testing. As an

answer to this problem, over the past few years we see an

emerging trend for a new generation of process models that

have a profound effect on software maintenance. These

models are referred to as agile processes that are iterative

and incremental in the sense that software is developed and

maintained in iterations (versions) considering new func-

tional and non-functional requirements incrementally in

each new version. Every iteration cycle is worked on by a

team through a full software development cycle, including

planning, requirements analysis, design, coding, unit test-

ing, integration testing, and system and acceptance testing

when a working version is to be demonstrated to stake-

holders. These processes consider source code as the pri-

mary artifact and therefore software maintenance becomes

a de facto part of the development process and not only an

Fig. 16 Q18Basic activities of the Service Migration and

Reuse Technique process.

24 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

activity that applies only on systems that have been

released and are already in operation. Agile methods

emphasize face-to-face communication over written docu-

ments and are use case-driven and architecture-centric.

They also allow for risk avoidance for the early resolution

of problems. Agile development has been widely docu-

mented in dedicated IEEE/ACM conferences such as

Extreme Programming (XP) and Agile. To date, we do

not have any concrete frameworks to assess how these

agile processes affect system quality or how these pro-

cesses can be further enhanced to become more efficient

for software maintainability purposes. Some of the emer-

ging processes that are expected to have an impact on

software maintenance include Agile Unified Process

(AUP) XP, Feature Driven Development (FDD), and

Open Unified Process (OpenUP).[138]

Modeling: So far, software representation models were

based on proprietary metalanguages and custom-made

schemas. This created a problem of building maintenance

tools that can interoperate. However, over the past few

years we see a standardization of the metamodeling lan-

guages used to represent software artifacts. The metamo-

deling language that emerged as a de facto standard is the

MOF. Combined with new transformation technologies

that aim to manipulate MOF-based models in a program-

matic manner, we see an emerging trend where software

artifacts such as low-level designs and source code are

created automatically as a result of transforming higher

level of abstraction models. This has a profound effect on

software maintenance as we see gradually moving from the

maintenance of source code artifacts to the maintenance of

software models with emphasis on techniques to support

model synchronization and model coevolution, that is, how

models can remain consistent when one of them changes

due to maintenance activities. An area that deals with the

issues of automatic code generation and themaintenance of

software models is MDE that is currently at the forefront of

software engineering research.

MDE is a software development methodology that

focuses on the creation, interpretation, and transformation

of models that represent software artifacts such as use

cases, requirements, design specifications, and test models.

These models can be used to automatically or semiauto-

matically generate infrastructure and application source

code for a system. MDE creates unique challenges and

opportunities for software development and software

maintenance. Some of the challenges relate to devising

well-defined representations of models and devising trans-

formation techniques for the generation of new models and

source code from existing models. In this context of MDE,

it is also needed to devise techniques that allow for all these

models to remain consistent and synchronized when one or

more of them changes due to maintenance activities. Even

though MDE may look complicated at first, it promises

significant gains in software development productivity,

especially when software development relates to enterprise

software systems that utilize standard architectural patterns

and middleware technologies. Furthermore, from the soft-

ware maintenance standpoint, MDE offers the possibility

of keeping track of the dependencies and the associations

between various software artifact models (e.g., require-

ments, architecture, and low-level design) with the source

code of a software system.

Transformations: At the heart of most maintenance

operations is the concept of software transformations.[139]

These transformations may take the form of modifying the

system so that it can be ported to a new environment, or of

altering the system to add new functionality, or of refactor-

ing the system so that it can be more maintainable. In the

past, software transformations were implemented using

proprietary frameworks. Furthermore, transformations

could not be easily reused among even similar applica-

tions. Over the past few years we observe an emerging

trend toward the standardization of such transformation

languages and transformation frameworks. These transfor-

mation languages and frameworks focus on manipulating

MOF models and are based on graph and tree transforma-

tions. Examples of such emerging languages and frame-

works for model transformation include QVT, the ATL,

and the AGG.

Evaluation: As discussed in the previous sections, the

evaluation of software maintenance operations falls into

two main categories, namely, technical and financial eva-

luation. In this respect, an emerging trend in evaluating

software maintenance and evolution choices from a tech-

nical perspective is techniques to establish traceability

links that allow for what-if type of impact analysis where

the effects of a transformation or a maintenance operation

can be better estimated before the operation is applied.[140]

Similarly, there are a couple of emerging trends for evalu-

ating alternative software maintenance and evolution sce-

nario and choices from a financial perspective. These

include the use of future options valuation and the valua-

tion of customer loyalty that can be gained by software

customization operations.

Software visualization: Software systems grow con-

stantly in size and complexity. Even though we have ela-

borate tools to analyze large software systems, the results

produced from these tools would be of limited value if we

could not have techniques to present these results to soft-

ware engineers. For humans, one of the best ways to under-

stand and analyze information is through images. In this

respect, software visualization is an emerging field in the

area of software maintenance. Software visualization tech-

niques are not new.[141] However, as the complexity of

software systems grows, the need for efficient visualization

techniques grows even bigger.[142–146] Some of the emer-

ging challenges in this field include dealing with complex-

ity of data, enhancing the usability of visualization tools,

and developing collaborative visualization tools. A thor-

ough discussion on research challenges in software visua-

lization can be found in Ref. [147].

Techniques for Software Maintenance 25

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Open source: Over the past decade we have witnessed

the revolution of open source system development. During

this decade we have also gathered valuable information on

open source development process models, on the impact

some design decisions have on open source quality, and on

the evolution history and politics of these systems.

Furthermore, we have gathered detailed reports related to

faults, fixes, and testing processes. An emerging trend in

the area of software maintenance is how to leverage the

information gathered from open source system develop-

ment and maintenance to apply other non-open source

projects and how to decide what strategy is best to use for

software maintenance. The software engineering commu-

nity believes that there is still a lot to be learnt from these

systems.[148–151]

Mining software repositories: A software system is

composed of artifacts that are far richer than just its source

code. These artifacts include of course the source code, but

also requirements and design documents, evolution data,

bug reports, test suites, deployment logs, and archived

communications. Over the past decade, and for the pur-

poses of software maintenance and evolution, the research

community developed robust technologies to model, store,

and process these artifacts in specialized repositories called

software repositories.[152–154] As these repositories grew in

size and complexity, so did the need to develop efficient

and tractable mining and retrieval techniques. Therefore,

an emerging field in the area of software maintenance is

mining software repositories. In this respect, there are

some challenges to address in this field. These include

dealing with software repository complexity and diversity

of artifacts these repositories store, dealing with consis-

tency of data, dealing with the extraction of high-quality

data in a tractable manner, and dealing with unstructured

data. A comprehensive discussion on mining software

repositories can be found in Ref. [155].

Systems of Systems: This term refers to a collection of

task-oriented, large-scale, concurrent and distributed sys-

tems that integrate and collaborate to form a new, more

complex “metasystem,” which offers more functionality

and performance than simply the sum of the constituent

systems. These SoS, also referred to as ULS, started to

appear in the areas of Command, Control, Computers,

Communication and Information Intelligence (C4I);

Surveillance and Reconnaissance (ISR); as well as in bank-

ing and finance. These systems pose unique challenges in

the area of software maintenance. Emerging trends in this

area include the use of unified models for the representa-

tion of these systems and their dependencies; techniques

for multilanguage multiplatform system analysis and

maintenance; techniques for monitoring RCA and diagnos-

tics of SoS; and techniques that assess the alignment of run

time IT infrastructure with business processes. The reader

can also refer to a detailed discussion on the emerging area

of SoS and ULS that can be found in Ref. [126].

CONCLUDING THOUGHTS

Software maintenance is a very important part of the soft-

ware development life cycle. In this entry, we discussed a

collection of topics that are indicative of this important

area of software engineering. Software maintenance is an

ever-evolving field and we anticipate it will generate sig-

nificant challenges, especially as it has started being con-

sidered, through agile processes, as an integral part of the

Greenfield development processes. As such, we expect to

see software maintenance techniques being even more

prevalent in the years to come, especially software main-

tenance techniques to support the development and opera-

tions of large-scale multilanguage, multiplatform Service-

Oriented systems. We encourage the readers to delve into

the references of this entry and investigate further specific

technical details of their interest.

REFERENCES Q11

1. Canning, R. That maintenance ‘iceberg’. EDP Analyzer

1972, 10 (10).

2. Swanson, E.B. The dimensions of maintenance. In

Proceedings of the 2nd International Conference on

Software Engineering, San Francisco, 1976.

3. The Institute of Electrical and Electronics Engineers. IEEE

Standard Glossary of Software Engineering Terminology,

1990. IEEE Standard 610.12-1990.

4. The Institute of Electrical and Electronics Engineers. IEEE

Standard for Software Maintenance, 1998. IEEE Standard

1219–1998.

5. Hunt, B.; Turner, B.; McRitchie, K. Software maintenance

implications on cost and schedule. In Proceedings of the

IEEE Aerospace Conference, 2008.

6. Chapin, N. Do we knowwhat preventive maintenance is? In

Proceedings of 2000 IEEE International Conference on

Software Maintenance, 2000.

7. Kajko-Mattsson, M. Preventive maintenance! Do we know

what it is? In Proceedings of the IEEE International

Conference on Software Maintenance, 2000. Q17

12. Lehman, M.M.; Fernandez-Ramil, J. Software evolution

and feedback: theory and practice. In Software Evolution;

Madhavji, N.H., Fernandez-Ramil, J., Perry, D.E., Eds.;

Wiley, 2006.

13. Lehman, M.M.; Belady, L.A., Eds.; Program Evolution:

Processes of Software Change; Academic Press, 1985.

14. Lehman, M.M.; Ramil, J.F.; Wernick, P.D.; Perry, D.E.;

Turski, W.M. Metrics and laws of software evolution—the

nineties view. In Proceedings of the 4th International

Software Metrics Symposium, 1997.

15. Bruegge, B.; Dutoit, A.H. Object-Oriented Software

Engineering Using UML, Patterns and Java; Prentice

Hall, 2004.

16. Schmidt, D. Model driven engineering. IEEE Comput.

2006 Q15.

17. Bennettand, K.; Rajlich, V. Software maintenance and evo-

lution: a roadmap. In Proceedings of the Conference on The

Future of Software Engineering, Limerick, Ireland, 2000.

26 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

18. Finnigan, P. et al. The software bookshelf. IBM Syst. J.

1997 36 (4).

19. Sousa, M.J.C.; Moreira, H.M. A survey on the software

maintenance process. In Proceedings of the IEEE

Conference of Software Maintenance, 1998.

20. Seaman, C.B. The information gathering strategies of soft-

ware maintainers. In Proceedings of IEEE Conference on

Software Maintenance, 2002.

21. Rook, P. Software Reliability Handbook; Centre for

Software Reliability, Springer, 1990.

22. Sliwerski, J.; Zimmermann, T.; Zeller, A. HATARI: raising

risk awareness. In Proceedings of 10th European Software

Engineering Conference, 2005.

23. Brodie, M.L.; Stonebraker, M. Migrating Legacy System;

Morgan Kaufmann: SanMateo, California, 1995.

24. Software Reengineering Assessment Handbook JLC-

HDBK-SRAH Version 3.0, USAF Software Technology

Support Center.

25. Arnold, R. Software Reengineering; IEEE Computer

Society Press: Los Alamitos, CA, 1993.

26. Lewis, G.; Morris, E.; Smith, D.; O’Brien, L. Service-

oriented migration and reuse technique (SMART). In

Proceedings of IEEE Conference on Software Technology

and Engineering Practice, 2005.

27. Cifuentes, C.; Gough, K.J. Decompilation of binary

programs. J. Softw. Pract. Experience 1995, 25 (7),

811–829.

28. Canfora, G.; Di Penta, M. New frontiers of reverse engi-

neering. In International Conference on Software

Engineering (ICSE’ 07)—Future of Software Engineering

Track (FOSE), 2007.

29. Darcy, D.P.; Palmer, J.W. The impact of modeling formal-

isms on software maintenance. IEEE Trans. Softw. Eng.

2006, 53 (4).

30. Stoy, J. Denotational Semantics: The Scott-Straehey

Approach to Programming Language Theory; MIT Press:

Cambridge, MA, 1977.

31. Aceto, L.; Fokkink,W.J.; Verhoef, C. Structural operational

semantics. In Handbook of Process Algebra; Bergstra, J.A.,

Ponse, A., Smolka, S.A., Eds.; Elsevier, 2001Q12 .

32. Milner, R. Communicating and Mobile Systems: The Pi-

Calculus. Cambridge University Press, 1999.

33. Markosian, L.; Newcomb, P.; Brand, R.; Burson, S.;

Kitzmiller, T. Using an enabling technology to reengineer

legacy systems. Commun. ACM 1994, 37 (5), 58–70.

34. Müller, H.A.; Klashinsky, K. Rigi a system for

programming-in-the-large. In Proceedings of the 10th

International Conference on Software Engineering, 1988.

35. Chen, Y.F.; Nishimoto, M.Y.; Ramamoorthy, C.V. The C

information abstraction system. IEEE Trans. Softw. Eng.

1990, 16 (3), 325–334.

36. Winter, A.; Kullbach, B.; Riediger, V. An overview of the

GXL graph exchange language. In Proceedings of the

Software Visualisation International Seminar, LNCS 2269,

Dagstuhl Castle, Germany, May 2002. Springer-Verlag,

2002; 324–336.

37. Aho, A.V.; Sethi, R.; Ullman, J.D.; Lam, M.S. Compilers:

Principles, Techniques, and Tools; Pearson Education, Inc.,

2006.

38. Bell Canada. “DatrixTM Abstract Semantic Graph:

Reference Manual v1.4 2000-05-01”, 2000.

39. H. A. Müller, K. Wong, and S. R. Tilley. “Understanding

software systems using reverse engineering technology.” In

the Proc. of the 62nd Congress of L’Association Canadienne

Francaise pour l’Avancement des Sciences Proceedings

(AFCAS), 1994.

40. Holt, R.C. Structural manipulations of software architecture

using Tarski relational algebra. In Proceedings of the

Working Conference on Reverse Engineering, 1998.

41. Ducasse, S.; Lanza, M.; Tichelaar, S. Moose: an extensible

language-independent environment for reengineering

object-oriented systems. In Proceedings of the Second

International Symposium on Constructing Software

Engineering Tools (CoSET ’00), 2000.

42. Holt, R.C.; Schurr, A.; Sim, S.E.; Winter, A. GXL: a graph-

based standard exchange format for reengineering. J. Sci.

Comput. Program. 2006, 60 (2), 149–170.

43. http://www.omg.org/technology/documents/modernization

speccatalog.htm Q14

44. Horwitz, S.; Reps, T.; Binkley, D. Interprocedural slicing

using dependence graphs. ACM TOPLAS 1990, 12 (1),

26–60.

45. Cifuentes, C.; Simon, D. Procedure abstraction recovery

from binary code. In Proceedings of the IEEE on the 4th

European Conference on Software Maintenance and

Reengineering, 2000.

46. Zheng, J.; Williams, L.; Nagappan, N.; Snipes, W.;

Hudepohl, J.P.; Vouk, M.A. On the value of static analysis

for fault detection in software. IEEE Trans. Softw. Eng.

2006, 32 (4).

47. Ritsch, H.; Sneed, H.M. Reverse engineering programs via

dynamic analysis. In Proceedings of IEEE Working

Conference on Reverse Engineering, 1993.

48. Salah, M.; Mancoridis, S.; Antoniol, G.; Di Penta, M.

Scenario-driven dynamic analysis for comprehending large

software systems. In Proceedings of IEEE Conference on

Software Maintenance and Reengineering, 2006.

49. Safyallah, H.; Sartipi, K. Dynamic analysis of software

systems using execution pattern mining. In Proceedings of

IEEE Conference on Program Comprehension, 2006.

50. Sartipi, K. Software architecture recovery based on pattern

matching. In Proceedings of IEEE Conference on Software

Maintenance, 2003.

51. Canfora, G.; Cimitile, A.; Munro, M.; Tortorella, M.

Experiments in identifying reusable abstract data types in

program code. In Proceedings of IEEE Conference on

Program Comprehension, 1993.

52. Yeh, A.S.; Harris, D.R.; Reubenstein, H.B. Recovering

abstract data types and object instances from a conventional

procedural language. In Proceedings of IEEE Working

Conference on Reverse Engineering, 1995.

53. Zou, Y.; Kontogiannis, K. Migration to object oriented plat-

forms: a state transformation approach. In Proceedings of

IEEE Conference on Software Maintenance, 2002.

54. Gallagher, K.; Lyle, J. Using program slicing in software

maintenance. IEEE Trans. Softw. Eng. 1991, 17 (8),

751–761.

55. Kagdi, H.; Maletic, J.I.; Sutton, A. Context-free slicing of

UML class models. In Proceedings of 21st International

Conference on Software Maintenance ICSM, 2005.

56. Jorgensen, P.C. Software Testing a Craftsman’s Approach;

CRC Press, 2006.

Techniques for Software Maintenance 27

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

57. Castelli. D. A strategy for reducing the effort for database

schema maintenance. In Proceedings of IEEE Conference

on Software Maintenance and Reengineering, 1998.

58. Muthanna, S.; Kontogiannis, K.; Ponnambalam, K.; Stacey, B.

A maintainability model for industrial software systems

using design level metrics. In Proceedings of IEEE

Conference on Reverse Engineering, 2000.

59. Pfleeger, S.L.; Bohner, S.A. A framework for software

maintenance metrics. In Proceedings of 6th International

Conference on Software Maintenance, 1990.

61. Tran, J.B. Software Architecture Repair as a Form of

Preventive Maintenance. Master’s thesis, University of

Waterloo, Waterloo, ON, Canada, 1999.

62. Tahvildari, L.; Kontogiannis, K. A software transformation

framework for quality-driven object-oriented re-engineer-

ing. In Proceedings of IEEE Conference on Software

Maintenance, 2002.

63. Baxter, I.; Pidgeon, C.; Mehlich, M. DMS: program trans-

formations for practical scalable software evolution. In

Proceedings of the 26th International Conference on

Software Engineering (ICSE ’04), 2004.

64. Mens, T.; Tourwe, T. A survey of software refactoring.

IEEE Trans. Softw. Eng. 2004, 30 (2).

65. Hauser, R.F.; Friess, M.; Kuster, J.M.; Vanhatalo, J. An

incremental approach to the analysis and transformation of

workflows using region trees. IEEE Trans. Syst. Man

Cybernetics, Part C: Applications and Reviews 2008, 38 (3).

66. Henrard, J.; Roland, D.; Cleve, A.; Hainaut, J.L. Large-scale

data reengineering: return from experience. In Proceedings

of IEEE Conference on Reverse Engineering, 2008.

67. Arnold, R.S.; Bohner, S.A. (Eds.). Software Change Impact

Analysis; Wiley-IEEE CS Press, 1996.

68. Briand, L.C.; Labiche, Y.; O’Sullivan, L. Impact analysis

and change management of UMLmodels. In Proceedings of

the 19th ICSM, IEEE CS Press, 2003.

69. Kataoka, Y.; Imai, Y.T.; Andou, H.; Fukaya, T. A quanti-

tative evaluation of maintainability enhancement by refac-

toring. In Proceedings of IEEE Conference on Software

Maintenance, 2002.

70. Agrawal, H.; Alberi, J.L.; Horgan, J.R.; Li, J.J.; London, S.;

Wong,W.E.; Ghosh, S.; Wilde, N.Mining system tests to aid

software maintenance. IEEE Comput. 1998, 31 (7), 64–73.

71. Schniedewind, N.F. Software quality maintenance model.

In Proceedings of IEEE Conference on Software

Maintenance, 1999.

72. Basili, V.; Rombach, D. Tailoring the software process to

goals and environments. In Proceedings of the 9th

International Conference on Software Engineering,

Monterey, California, 1987.

73. Pfleeger, S.L. Software metrics: a rigorous and practical

approach. Course Technology, 2nd Ed.; 1998.

74. Bandi, R.K.; Vaishnavi, V.K.; Turk, D.E. Predicting main-

tenance performance using object-oriented design complex-

ity metrics. IEEE Trans. Softw. Eng. 2003, 29 (1).

75. Coleman, D.; Lowther, B.; Oman, P. The application of

software maintainability models in industrial software sys-

tems, J. Syst. Softw. 1995, 29, 3–16.

76. Kazman, R.; Bass, L.; Abowd, G.; Webb, M. SAAM: a

method for analyzing the properties of software architec-

tures. In Proceedings of IEEE International Conference on

Software Engineering, 1994.

77. Kazman,R.;Klein,M.;Barbacci,M.;Longstaff, T.; Lipson,H.;

Carriere, J. The architecture tradeoff analysis method. In

Proceedings of IEEE Conference on Engineering of

Complex Computer Systems, 1998.

78. Antoniol, G.; Cimitile, A.; DiLucca, A.; DiPenta,M. Assessing

staffing needs for a software maintenance project through

queuing simulation. IEEE Trans. Softw. Eng. 2004, 30 (1 Q13).

79. Sneed, H.M. Estimating the costs of software maintenance

tasks. In Proceedings of IEEE Conference on Software

Maintenance, 1995.

80. Boehm, B. Software Engineering Economics; Prentice Hall,

1981.

81. Black, F.; Scholes, M. The pricing of options and corporate

liabilities. J. Polit. Econ. 1973, 81 (3), 637–654.

82. National Aeronautics and Space Administration Cost

Analysis and Evaluation Division http://www.nasa.gov/

offices/pae/organization/cost_analysis_division.html.

83. Doval, D.; Mancoridis, S.; Mitchell, B. Automatic cluster-

ing of software systems using a genetic algorithm. In

Proceedings of IEEE Conference on Software Technology

and Engineering Practice, 1999.

84. Tran, J.B.; Holt, R.C. Forward and reverse repair of

software architecture. In Proceedings of IBM Conference

Center for Advanced Studies CASCON, IBM Press, 1999.

85. Krikhaar, R. Software Architecture Reconstruction. Ph.D.

thesis, University of Amsterdam: The Netherlands, 1999.

86. Egyed, A.; Grunbacher, P. Automating requirements trace-

ability: beyond the record and replay paradigm. In

Proceedings of 17th International ASE Conference, IEEE

CS Press, 2002.

87. Mylopoulos, J.; Chung, L.; Nixon, B. Representing and

using non functional requirements: a process-oriented

approach. IEEE Trans. Softw. Eng. 1992, 18 (6), 483–497.

88. Fickas, S.; Feather, M. Requirements monitoring in

dynamic environments. In Proceedings of Requirements

Engineering Conference, 1995.

89. Robinson,W.N. Implementing rule-based monitors within a

framework for continuous requirements monitoring. In

Proceedings of HICSS’05, 2005.

90. Yu, Y.; Wang, Y.; Mylopoulos, J.; Liaskos, S.;

Lapouchnian, A. doPrado Leite, J.C.S. Reverse engineering

goal models from legacy code. In Proceedings of IEEE

RE’05, 2005.

91. Moskewicz, M.W.; Madigan, C.F.; Zhao, Y.; Zhang, L.;

Malik, S. Chaff: engineering an efficient sat solver. In

Design automation. ACM Press: New York, USA, 2001.

92. Wang, Y.; McIlraith, S.; Yu, Y.; Mylopoulos, J. An auto-

mated approach to monitoring and diagnosing require-

ments. In Proceedings of IEEE/ACM International

Conference on Automated Software Engineering, 2007.

93. Razavi, A.; Kontogiannis, K. Pattern and policy driven

log analysis for software monitoring. In Proceedings of

IEEE Conference on Computer Software and

Applications, 2008.

94. Chaim, M.L.; Maldonado, J.C.; Jino, M. A debugging strat-

egy based on requirements of testing. In Proceedings of

IEEE Conference on Software Maintenance and

Reengineering, 2003.

95. Brown, W.J.; Malveau, R.C.; Mowbray, T.J. AntiPatterns:

Refactoring Software, Architectures, and Projects in Crisis;

Wiley, 1998.

28 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

96. Ying, A.T.T.; Murphy, G.C.; Ng, R.T.; Chu-Carroll, M.

Predicting source code changes by mining change history.

IEEE Trans. Softw. Eng. 2004, 30 (9), 574–586.

97. Mockus, A. Votta, L.G. Identifying reasons for software

changes using historic databases. In Proceedings of the

IEEE International Conference on Software Maintenance,

San Jose, CA, 120–130, 2000.
98. Larson, E. Assessing work for static software bug detec-

tion. In Proceedings of the 1st ACM international

Workshop on Empirical Assessment of Software

Engineering Languages and Technologies, 2007.

99. Ayewah, N.; Pugh, W.; Morgenthaler, J.D.; Penix, J.; Zhou,

Y. Using FindBugs on production software. In Proceedings

of the ACM OOPSLA 2007 Companion, 2007.
100. Koenig, A. Patterns and antipatterns. J. Object-Oriented

Program. 1995, 8 (1), 46–48.

101. Tsantalis, N.; Chaikalis; T.; Chatzigeorgiou, A.

JDeodorant: identification and removal of type-checking

bad smells. In Proceedings of the 12th European

Conference on Software Maintenance and Reengineering

(CSMR ’08), Athens, Greece, 2008; 329–331.

102. Sneed, H.M. Integrating legacy software into a service

oriented architecture. In Proceedings of IEEE Conference

on Software Maintenance and Reengineering, 2006.

103. Schmidt, D.; Stal, M.; Rohnert, H.; Buschmann, F. “Pattern-

Oriented Software Architecture” Volume 2: Patterns for

Concurrent and Networked Objects. Wiley, 2000.

104. Fowler,M. Patterns of Enterprise Application Architecture;

Addison-Wesley, 2002.

105. Hohpe, G.; Woolf, B. Enterprise Integration Patterns:

Designing, Building, and Deploying Messaging

Solutions; Addison-Wesley, 2003.

106. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.M. Design

Patterns: Elements of Reusable Object-Oriented Software;

Addison-Wesley, 1994.

107. Clements, P.; Northrop, L. Software Product Lines:

Practices and Patterns, 3rd Ed.; Addison-Wesley

Professional, 2001.

109. Fowler, M.; Beck, K.; Brant, J.; Opdyke, W.; Roberts, D.

Refactoring: Improving the Design of Existing Code;

Addison-Wesley, 1999.

110. Gschwind, T.; Koehler, J.; Wong, J. Applying patterns

during business process modeling. In Proceedings of the

6th International Conference on Business Process

Management (BPM), vol. 5240 of Lecture Notes in

Computer Science, 2008.

111. Yau, S.S.; Collofello, J.S.; MacGregor, T. Ripple effect

analysis of software maintenance. In Proceedings of IEEE

Conference on Computer Software and Applications

Conference, COMPSAC, 1978.

113. Binkley, D. An empirical study of the effect of semantic

differences on programmer comprehension. In

Proceedings of the IEEE International Conference on

Program Comprehension, 2002.

114. Mehra, A.; Grundy, J.; Hosking, J. A generic approach to

supporting diagram differencing and merging for colla-

borative design. In ASE ’05: Proceedings of the 20th

IEEE/ACM international Conference on Automated

Software Engineering, ACM Press, 2005.

115. Ivkovic, I.; Kontogiannis, K. Tracing evolution changes of

software artifacts through model synchronization. In

Proceedings of the 20th International Conference on

Software Maintenance ICSM, 2004.

116. Hung, M.; Zou, Y. Recovering workflows from multi tiered

e-commerce systems. In Proceedings of the IEEE

International Conference on Program Comprehension, 2007.

117. Ernst, M.D. Static and dynamic analysis: synergy and

duality. In Proceedings of International Conference on

Software Engineeroing (ICSE) Workshop on Dynamic

Analysis (WODA), 2003.

118. Ivkovic, I.; Kontogiannis, K. Towards automatic establish-

ment of model dependencies using formal concept analy-

sis. Int. J. Softw. Eng. Knowl. Eng. 2006, 16 (4), 499–522.

119. Czarnecki, K.; Eisenecker, U. Generative Programming:

Methods, Tools, and Application; Addison-Wesley, 2000.

120. El-Ramly, M.; Iglinski, P.; Stroulia, E.; Sorenson, P.;

Matichuk, B. Modelling the system-user dialog using

interaction traces. Eighth Working Conference on

Reverse Engineering (WCRE), 2001.

121. Canfora, G.; Cimitile, A.; DeLucia, A.; DiLucca, G.A.

Decomposing legacy programs: a first step towards

migrating to client-server platforms. J. Syst. Softw. 2000,

54 (2), 99–110.

122. Aversano, L.; Canfora, G.; Cimitile, A.; DeLucia, A.

Migrating legacy systems to the web: an experience report.

In Proceedings of the European Conference on Software

Maintenance and Reengineering (CSMR), 2001.

123. Canfora, G.; Fasolino, A.R.; Frattolillo, G.; Tramontana,

P. A wrapping approach for migrating legacy system inter-

active functionalities to service oriented architectures.

J. Syst. Softw. 2008, 81 (4), 463–480.

124. Sneed, H.M. Encapsulation of legacy software: a techni-

que for reusing legacy software components. J. Ann.

Softw. Eng. 2000, 9, 293–313.

125. Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.

Documenting Software Architectures: Views and Beyond

(SEI Series in Software Engineering); Addison-Wesley,

2002.

126. Feiler, F. et al. Ultra-Large-Scale Systems: The Software

Challenge of the Future; Software Engineering Institute,

2006.

128. Czarnecki, K.; Helsen, S. Feature-based survey of model

transformation approaches. IBM Syst. J. 2006, 45 (3).

129. Kontogiannis, K.; Martin, J.; Wong, K.; Gregory, R.;

Muller, H.; Mylopoulos, J. Code migration through trans-

formations: an experience report. In Proceedings of

CASCON, 1998.

130. Martin, J.; Müller, H.A. C to Java migration experiences.

In Proceedings of IEEE Conference on Software

Maintenance and Reengineering, 2002.

131. Penny, D. The Software Landscape: A Visual Formalism

for Programming-in-the-Large; University of Toronto,

1993.

132. Devanbu, P.T. GENOA – a customizable front-end retar-

getable source code analysis framework. ACM TOSEM

1999, 8 (2), 177–212.

133. Cordy, J.R.; Dean, T.R.; Malton, A.J.; Schneider, K.A.

Source transformation in software engineering using the

TXL transformation system. J. Inf. Softw. Technol. 2002,

44 (13), 827–837.

134. Ferenc, R.; Beszedes, A.; Tarkiainen, M.; Gyimothy, T.

Columbus reverse engineering tool and schema for Cþþ.

Techniques for Software Maintenance 29

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

In Proceedings of the International Conference on

Software Maintenance, 2002.

135. Raza, A.; Vogel, G.; Plödereder, E. Bauhaus—a tool suite

for program analysis and reverse engineering. In

Proceedings of Reliable Software Technologies, Ada-

Europe 2006, LNCS(4006), 2006.

136. IEEE Technical Committee on Software Engineering,

Committee on Reverse Engineering and Reengineering.

http://reengineer.org/tcse/revengr/.

138. Abrahamsson, P. et al. Agile processes in software engi-

neering and extreme programming. In Proceedings of the

9th International Conference, XP, Springer, 2008.

139. M. Bravenboer, K.T. Kalleberg, R. Vermaas, and E. Visser.

“Stratego/XT0.16: components for transformation sys-

tems”. In Proc. Of the 2006 ACM SIGPLAN Workshop

on Partial Evaluation and Semantics Manipulation, 2006.

140. Barros, S.; Bodhuin, T.; Escudie, A.; Queille, J.; Voidrot, J.

Supporting impact analysis: a semi-automated technique

and associated tool. In Proceedings of the 11th ICSM,

IEEE CS Press, 1995.

142. Rilling, J.; Meng, W.J.; Chen, F.; Charland, P. Software

visualization—a process perspective. In Proceedings of

VISSOFT, 2007.

144. Storey, M.; Best, C.; Michaud, J.; Rayside, D.; Litoiu, M.;

Musen, M. SHriMP views: an interactive environment for

information visualization and navigation. In Proceedings

of Conference on Human Factors in Computing Systems.

ACM Press: New York, USA, 2002.

145. Greevy, O.; Lanza, M.; Wysseier, C. Visualizing live soft-

ware systems in 3D. In Proceedings of the 2006 ACM

symposium on Software Visualization, ACM Press: New

York, USA, 2006.

146. German, D.; Hindle, A. Visualizing the evolution of soft-

ware using softchange. Int. J. Softw. Eng. Knowl. Eng.

2006, 16 (1).

147. Storey, M.A.; Bennett, C.; Bull, I.; German, D. Remixing

visualization to support collaboration in software mainte-

nance. In Proceedings of IEEE Conference on Software

Maintenance, FOSM Track, 2008.

148. Ogawa, M.; Ma, K.; Bird, C.; Devanbu, P.; Gourley, A.

Visualizing social interaction in open source software pro-

jects. In Proceedings of 6th International Asia-Pacific

Symposium on Visualization (APVIS).

149. Xie, T.; Pei, J. MAPO: mining API usages from open

source repositories. In Proceedings of International

Workshop on Mining Software Repositories (MSR), 2006.

150. Mockus, A.; Fielding, R.T.; Herbsleb, J.D. A case study

of open source software development: the apache server.

In Proceedings of the 22nd International Conference on

Software Engineering, 2000.

151. M. Godfrey, D. German. “The Past, Present, and Future of

Software Evolution”. In Proc. of IEEE International

Conference on Software Maintenance, FOSM Track, 2008.

152. Hassan, A.E.; Mockus, A.; Holt, R.C.; Johnson, P.M.

Guest Editor’s Special Issue on Mining Software

Repositories. IEEE Trans. Softw. Eng. 2005, 31 (6),

426–428.

153. Zimmermann, T.; Weißgerber, P.; Diehl, S.; Zeller, A.

Mining version histories to guide software changes. IEEE

Trans. Softw. Eng. 2005, 31 (6), 429–445.

154. Canfora, G.; Cerulo, L. Impact analysis by mining soft-

ware and change request repositories. In Proceedings of

the 11th International Symposium on Software Metrics,

IEEE CS Press, 2005.

155. Hassan, A. The road ahead: mining software repositories.

In Proceedings of IEEE Conference on Software

Maintenance, FOSM Track, 2008.

156. Bassil, S. Q16; Keller, R. Software visualization tools: survey

and analysis. In Proceedings of International Workshop on

Program Comprehension (IWPC ’01), 2001.

157. Beyer, D.; Hassan, A.E. Animated visualization of soft-

ware history using evolution story boards. In Proceedings

of the 13th Working Conference on Reverse Engineering

(WCRE ’06), 2006.

158. Collard, M.L.; Kagdi, H.H.; Maletic, J.I. An XML-based

lightweight Cþþ fact extractor. In Proceedings of the 11th

International Workshop on Program Comprehension

(IWCP), 2003.

159. Gotel, O.C.Z.; Finkelstein, A.C.W. An analysis of the

requirements traceability problem. In Proceedings of 1st

International Conference on Requirements Engineering,

1994.

160. B.A. Kitchenham, G.H. Travassos, A. von Mayrhauser,

F. Niessink, N.F. Schneidewind, J. Singer, S. Takada,

R. Vehvilainen, and H. Yang. “Towards an ontology of

software maintenance“. Journal of Software Maintenance

and Evolution: Research and Practice, 11(6), 1999.

161. Lehman, M.M.; Perry, D.E.; Ramil, J.F. Implications of

evolution metrics on software maintenance. In

Proceedings of the IEEE International Conference on

Software Maintenance, 1998.

162. Margolis, B. SOA for the Business Developer: Concepts,

BPEL, and SCA; Mc Press, 2007.

163. Williams, C.C.; Hollingsworth, J.K. Automatic mining of

source code repositories to improve bug finding techni-

ques. IEEE Trans. Softw. Eng. 2005, 31 (6), 466–480.

30 Techniques for Software Maintenance

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

