A Mechanized Proof of Type Safety for the
PolymorphicA-Calculus with Referencés

Michalis A. Papakyriakou Prodromos E. Gerakios Nikolaos S. Papaspyrou

National Technical University of Athens
School of Electrical and Computer Engineering, Division of Computer Science,
Software Engineering Laboratory, Polytechnioupoli, 15780 Zografou, Athens, Greece

{mpapakyr, pgerakios, nickie }@softlab.ntua.gr

Abstract

In this paper we study"'®f, a Church-style typed lambda calculus with impredicative polymor-
phism and mutable references. We formalize the syntax, type system and call-by-value operational
semantics fon" " in the Isabelle/HOL theorem prover and prove the type safety of the language.

1 Introduction

Type systems typically guarantee a number of interrelated safety properties, for instance, memory safety
(programs can only access appropriate memory locations) and control safety (programs can only trans-
fer control to appropriate program points). Given a formal definition of a programming language, re-
searchers are typically interested in provigge safetyin the sense that the static type system precludes
classes of dynamic errors when executing programs.

The polymorphicA-calculus (usually referred to &) is due to Girard and Reynolds, who inde-
pendently discovered polymorphic typds P]. First-class polymorphism in modern programming lan-
guages is a very useful characteristic, as it allows code re-use and modular type-checking. The language
that we study in this paper 5%, an extension of%, with ML-style mutable references supporting
reference allocation, dereferencing and type-preserving (weak) assignment. Type polymorphism and
mutable references often interact in subtle ways leading to unsoundness. A well-known example is the
problem of polymorphic references in MBJ|

Pencil-and-paper type safety proofs for programming languages of the complexityebéire very
often error prone. With the aid gdroof assistantstools that facilitate mechanized theorem proving,
researchers can be guided in such proofs and draw confidence that their proofs are correct. In this paper,
we outline a mechanized type safety proof i61®", carried out in thdsabelle/HOL [4] proof assistant.
For the representation of bound variables, we use a technique called “locally namgllegs’the best of
our knowledge, this is the first mechanized type safety proof for a language with polymorphic references
in Isabelle/HOL and the first mechanized type safety proof, irrespective of proof assistant, for a language
with references and first-class (impredicative) polymorphism.

The study of languages with polymorphic references and their metatheory is not new. Tofte proved
type soundness for polymorphic references using co-induc8pnHarper showed how a type-safety
proof can be arranged so that there is no need for co-indudiofi.[Recent research has focused on
how to best mechanize the metatheory of programming langu8g6kdnd especially to the study of
fully-fledged languages, such as M1(, 11] and Java12].

*This paper is based on work within the research project “Theory of Algorithms and Logic: Applications in Computer
Science”, partially funded by the European Social Fund (75%) and the Greek Ministry of Education (2BBAEE II:
Mubaydpas.

Syntax Well formed types AET

Tu=Unit | @« | 7T—7 | Yo7 | Ref 7 A A
. . A = Unit AaEa = e
e = unit | z | Az:7.e | Aace | erez | el7] AET —
| newe | derefe | e;:=e2 | locl Aalr AT
v = unit | Az:T.e | Aa.v | locl TAEVar TAERefr
AET Tyz:m;AMEe:7’ LA, oMbEov:T
r;A;M H it : Unit Tz:m;AMF oz -
38 unit : Uni T Ty A T:T T AME Azirerr—r TAMF Aav Var
DAMEe 77 T;AMEe:T AMEe:Var AT AMEe:T
D;AM b erex: 7/ ;AME elr] i m{a— 7'} [A;M F newe: Ref 7
I'A;M F e:Ref 1 T;A;MEep:Refr ThA;MEea: T
;A Ml :7 F locl: Ref
I'A;M F derefe: T A M F oeg :=eg: Unit PE AL LT oc erT
S;e1 — S'5ef S;ea — 5’5 e S;e — S';¢ S;(Az:T.e)v — S;e{z — v}
S;e1ea — §'5¢€] e2 S;v1ea — S'5v1 €l S;elr] — S';¢€ [7] S; (Aa.v) [r] —> S;v{a — 7}
. N . /. !
Sie — Sie Sie — Sie S;newv — S,l — v;locl
S;newe — S’;newe’ S;deref ¢ — S’; deref ¢/
Sier — S's¢) Sien — '€l S, 1 — v;deref (locl) — S,l — v;v

Sie1:=ex — S'ie] :=e S;v1 i=ex — S'5v1 =€) S,l—v';locl:=v — Sl — v;v

Figure 1: The definition oA "',

types name = nat datatype tm =
TmUnit
datatype ty = | TmFreeVar name
TyUnit | TmVar nat

| TyBase name | TmAbs ty tm (' ALJ]._ [900,800] 800)
| TyFreeVar name | TmApp tm tm (infixl - 900)
| TyVar nat | TmProd tm (" A[*]._ [900] 900)
| TyArrow ty ty (infixr — 900) | TmTapp tm ty () [900,0] 900)
| TyForall ty (V._ [900] 900) | TmNew tm
| TyRef ty | TmAssign tm tm (infixr := 900)
| TmDeref tm
| TmLoc name
Figure 2: The syntax ok% " in Isabelle/HOL.
2 Syntax

The language\” "' that we study is the polymorphic-calculus %), extended with first-class ML-style
references. No memory deallocatidixe) is possible and there is a “value restriction” for polymorphic
terms [L3, p. 335-336]. The syntax, typing and call-by-value semantics"8¥ is given in Fig.1, in

the way that it is commonly presented. In this and the following sections, we outline the definition of
A% in Isabelle/HOL and the proof of its type safety. We focus on explaining and justifying the design
choices we made.

The syntax of\""®, as encoded itsabelle/HOL, is given in Fig.2. In comparison to the standard
syntax of Fig.1, the first difference to notice is the addition of base types (which are easier to deal with,
if we distinguish them from free type variables). The second, and most important difference is the use of
a technique called “locally nameless” for dealing with bound varialips [

In the locally nameless approach, named variables and DeBruijn indidgsdexist in the rep-
resentation of types and terms. Each abstractioan(d A for terms,V for types) introduces a new
DeBruijn index, not a named variable. However, DeBruijn indices are replaced by named variables
whenever we want to sdéasideterms. This means that any given term or type that we examine can-

not contain unbound DeBruijn indices (we call such terms and tgfuesed) In this way, we can de-
fine substitution without having to shift any DeBruijn indices. We define three kinds of substitution:
vsubst _ty (types in types)ysubst _tm (terms in terms) andsubst _tmty (types in terms). For
exampleyvsubst _ty 7'i7 stands forr{i — 7'}. We also defindreshen _ty «r as a shortcut for
vsubst _ty(TyFreeVar «) 0. Similarly for the other two kinds of substitution.

A definition that we found very useful is that oBabstitution functioffior types. A substitution func-
tion captures the notion of@ntext possibly containing holes in which closed types can be substituted.
If fandg are two substitution functions, we can show thaf(ifr) = g(«) for some fresh type variable
a, thenf (1) = g(r) for all closed types-.

3 Typing

Our encoding of the typing relation isabelle/HOL treats named variables and memory locations iden-
tically. In this way, we use the same environment foand M (see Fig.1). We chose to represent
environments as sets. The type environm&ntontains type variables, while the term environmEnt
contains pairs of term variables (or locations) and types.

The definition ofwell formedtype (A = 7) is almost straightforward: all named variables must exist
in the given type environmemk. The case of/-abstractions is a little tricky, as they introduce new
DeBruijn indices in their bodies. For such an abstraction to be well formed, the body must be well
formed when we substitute the DeBruijn index witfreshnamed variabler, which is introduced irA.
The notion of dreshvariable is also tricky. A fresh variablemust not appear itx or in the abstraction’s
body. However, this is not sufficient for proving essential propertie& gf 7, such as weakening (i.e.
if AE=7anda is fresh, themA, o |=7). To bypass this problem, we also restictot to occur in an
arbitrary finite setl,, which intuitively represents “all other variables that should be avoided”.

wf_forall[intro!] : [A E TY; finite L;
Va. - A defines a A — a free in type TANa¢gL —
A,(a: x) [freshen_ty a T] = AEV.T

We must also restrict ourselvesvell formedenvironments. Every finité is well formed. For d" to be

well formed, it must be finite, it must not attribute two different types to the same variable (or location)
and all attributed types must be well formed. Bsontains both named variables and locations, this
definition imposes a name distinction between the two and is stricter than necessary.

A E TY = finite A
A E OK = finite F'ANA ETYA(YXx 71 72, (x DT1) €l A (xD>72) €I — 71=72 A A | 71)

The typing judgement requires the substitution of DeBruijn indices with fresh named variables, in
a way similar to what we used for well formed types. It is worth noting that no typing rule exists
for DeBruijn indices and the typing rules for named variables and locations are almost identical. The
following excerpt shows the typing rules farabstractions, named variables and locations.

t_varfintro!] : [T;A EOK (xp>r) € I'] = I'; A + TmFreeVar x @ 7
t_abslintro!] : [T; A E OK; finite L; A E 71,
vx. — x free in e AXx &L A - T defines x —
r(x: 71); A + freshen_tm x e : 2] =
AR A7 e 711572
t_loc[intro!] : [T;AEOK (I pr) eI’'] = I A F TmLoc | : TyRef 7

4 Semantics

We used a small step operational semantics\fof’, similar to the one in Figl. However, as we plan
to extend\™"®" in the future with reference deallocation and will have to resort to a substructural type

3

system 15, ch. 1], we chose to store computed values in memory. Therefore, aS$tyatains both
computed values and the contents of memory locations (references). It is a set of pairs of variables
(locations) and terms. A store vgell formedif it is finite, it does not bind a variable (location) to two
different terms and all the terms it contains are indeed values.

S [Store = finite S A (VX vl v2. (X +—vVvl) €S A (X —V2) €S — vl=v2 A value v1)

Our semantics has an extra rugeyal) that adds a computed value to a fresh variable (location) in
the store. Thus, in our semantics, we treat variables {ergzreeVar x) in the same way that values
are used in Figl. To illustrate this, we give below our three evaluation rules that define (call-by-value)
function application. It can easily be shown that the two semantics are equivalent.

e_valfintro!] : [- S defines z; S = Store; value v] = Siv — S,(z —vV);TmFreeVar z
e_app_pl[intro!] : [Sel — Siel’] = Siel-e2 — Siel -e2

e_app_p2[intro!] : [S;.e2 — S%e2"]| = S;(TmFreeVar x) -e2 — S')(TmFreeVar x) -e2’
e_beta[intro!] : [@—XA7lel) € S] = S;(TmFreeVar z) -(TmFreeVar y) < S;freshen_tm y el

5 Metatheory

As usual, we prove the type safety 0t by proving two theorems: progress and preservation. Several
standard lemmata are needed. Canonical form lemmata allow one to deduce the syntactic form of a well
typed value, given its type. Weakening lemmata allow one to extend the environments in a judgement
with fresh bindings. A substitution lemma, in general, states that typing is preserved when a term of the
same type is substituted for a free variable. Given below are the definitions of our two main substitution
lemmata, for terms and types. They are somewhat tricky, because of the locally nameless approach.

lemma substitution:

assumesI; A - e : 7

and I',(x: 7); A F vsubst_tm (TmFreeVar x) i e : T
and - x free in e

shows I'; A + vsubst_tm e’ i e : T

lemma substitution_ty:
assumesA E 7'
and vsubst_ty _env (TyFreeVar a) i I A@) +
vsubst_tmty (TyFreeVar a) i e : vsubst_ty (TyFreeVar a) i T
and - a free in term e A - a free in type T A - a free in env I' A = A defines a
and vsubst_ty env i ItA E OK
shows vsubst_ty_env 7 i TI; A F vsubst tmty 7' i e : vsubst_ty 0T

Both are proved by induction on the size of teem The proof of the latter requires the property of
substitution functions that was mentioned;h

The correspondence between a stérand typing environmentB and A is captured by thetore
typingrelation= S : T'; A. The definitions of the two main theorems, preservation and progress, easily
follow. Preservation states that operational semantics preserves typing, with possibly extended environ-
ments. Progress states that a well typed term istk either it is a variable (containing a computed
value in the store), or the operational semantics can make one more evaluation step. Both theorems can
be proved by induction on the typing derivation.

ES: A =S [Store A(Vx7.xD>r) €T — (V. (x —»v) € SAT; ARV 1)

theorem preservation:
assumesI; A H e : 7
and S;e — S’
and = S: I A
shows 31" A TTC I AACA ES: I A AT, A He: T

theorem progress:
assumesI; A H e : 7
and = S: IUA
shows not_stuck e S

6 Conclusions and Future Work

In this paper we outlined a mechanized proof of type safety\fdf’, the extension of?, with ML-

style mutable references, using thebelle/HOL proof assistant. To the best of our knowledge, it is the
first fully mechanized type safety proof for a language with polymorphic referendesbielle/HOL.
Additionally, it is the first fully mechanized type safety proof for a language with mutable references and
impredicative polymorphism.

We intend to introduce an operator for explicit reference deallocatioee]) in A% "', To guarantee
the type safety of the resulting language, we will employ a substructural type system. The interplay
between linear pointer types (necessary for deallocation and strong assignment) and unrestricted pointer
types (useful for dereferencing and weak assignment) is one of the primary interests of our future work.

References

[1] J.-Y. Girard, “Une extension de l'interptation de &dela I'analyse, et son applicaticnl’élimination des
coupures dans I'analyse et l&&trie des types,” ifProceedings of the 2nd Scandinavian Logic Symposium
(J. E. Fenstad, ed.), vol. 63 &tudies in Logic and the Foundations of Mathematms. 63—92, North-
Holland, 1971.

[2] J. C. Reynolds, “Towards a theory of type structure,Piogramming Symposiu(B. Robinet, ed.), vol. 19
of Lecture Notes in Computer ScienéBerlin), pp. 408-425, Springer-Verlag, 1974.

[3] M. Tofte, “Type inference for polymorphic referencesjformation and Computatignvol. 89, pp. 1-34,
Nov. 1990.

[4] T. Nipkow, L. C. Paulson, and M. Wenzdkabelle/HOL — A Proof Assistant for Higher-Order Logic
vol. 2283 ofLecture Notes in Computer Scienc8pringer, 2002. Updated documentation available from
http://www.cl.cam.ac.uk/research/hvg/lsabelle/documentation.html

[5] C. McBride and J. McKinna, “Functional pearl: | am not a number; | am a free variablBfdceedings of
the 2004 ACM SIGPLAN Haskell Worksh@¢New York), pp. 1-9, ACM Press, 2004.

[6] R. Harper, “A simplified account of polymorphic referencéaformation Processing Lettersol. 51, no. 4,
pp. 201-206, 1994,

[7] R. Harper, “A note on “A simplified account of polymorphic referencegiformation Processing Letters
vol. 57, no. 1, pp. 15-16, 1996.

[8] B. Aydemir, A. Chargéraud, B. C. Pierce, and S. Weirich, “Engineering aspects of formal metatheory.”
Manuscript, available fronhttp://www.cis.upenn.edu/"bcpierce/papers/binders.pdf ,
Apr. 2007.

[9] X. Leroy, “A locally nameless solution to the POPLmark challenge,” Research report 6098, INRIA, Jan.
2007.

[10] D.K. Lee, K. Crary, and R. Harper, “Towards a mechanized metatheory of Standard NRQRh '07: Pro-
ceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of programming lapnguages
pp. 173-184, 2007.

[11] C. Duboais, “Proving ML type soundness within Coq, TPHOLSs '00: Proceedings of the 13th International
Conference on Theorem Proving in Higher Order Logjgs. 126—144, 2000.

[12] D. von Oheimb,Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare LoBltD the-
sis, Technische Univergit Minchen, 2001. Available frorhttp://www4.in.tum.de/"oheimb/
diss/

[13] B. C. Pierce Types and Programming LanguagésIT Press, 2002.

[14] N. G. de Bruijn, “Lambda-calculus notation with nameless dummies: a tool for automatic formula manipu-
lation,” Indagationes Mathematicaeol. 34, pp. 381-392, 1972.

[15] B. C. Pierce, ed Advanced Topics in Types and Programming Langualy#$ Press, 2005.

http://www.cl.cam.ac.uk/research/hvg/Isabelle/documentation.html
http://www.cis.upenn.edu/~bcpierce/papers/binders.pdf
http://www4.in.tum.de/~oheimb/diss/
http://www4.in.tum.de/~oheimb/diss/

	Introduction
	Syntax
	Typing
	Semantics
	Metatheory
	Conclusions and Future Work

