From Program Verification to Certified Binaries

Angelos Manousaridis Michalis A. Papakyriakou Nikolaos S. Papaspyrou

National Technical University of Athens School of Electrical and Computer Engineering Software Engineering Laboratory

{amanous, mpapakyr, nickie}@softlab.ntua.gr

Logic and Theory of Algorithms 4th Conference on Computability in Europe Athens, Greece, June 18, 2008

What is this about?

What is this about?

OVERALL RATING: -4 (unacceptable for presentation) REVIEWER'S CONFIDENCE: 3 (high)

This short paper replays the decade old vision of proof-carrying code, but aiming to increase the level of ambition from simple memory and control-flow properties to arbitrary program properties.

----- REVIEW ------

(snip)

I was unable to spot any research contributions or novelty in the paper.

(snip)

In summary, this work is much too preliminary and is in the current state unacceptable for presentation.

So, what is this all about?

- A position paper, not much of a research paper
- Goal? the construction of certified software i.e. that provably satisfies its specifications
- Why? the Holy Grail of software engineering!
- How? by combining formal verification and proof-carrying code

Outline

Introduction

Program verification Proof-carrying code

Motivation

A Hybrid System

A Motivating Example

Proof-preserving Compilation

Conclusion

Introduction

Program verification

- aims at formally proving program correctness
- given a formal specification or property

(i)

- Iong tradition
- several formal logics

(4 decades) (e.g. Hoare Logic)

at the source code level

Introduction (ii)

- Proof-carrying code (PCC)
 - certified binary: a value together with a proof that the value satisfies a given specification
 - relatively recent approach (~10 years)
 - essential in modern distributed computer systems
 - executable code is transferred among devices that do not necessarily trust one another
 - at a lower level (e.g. machine language)
 - mainly interested in relatively simple properties: memory safety and control flow

Introduction (iii)

- Type-theoretic approaches to PCC
 - e.g. Shao *et al.*, POPL 2002, TOPLAS 2005; Crary and Vanderwaart, ICFP 2002
 - arbitrary program properties
 - embedding of logic "formulae as types"

- proof-preserving compilation
- makes the proof a part of the code
- type (proof) inference is undecidable

	Program verification	PCC
programmer "friendly"		
high-level proofs		
end-user safety		

	Program verification	PCC
programmer "friendly"		
high-level proofs		
end-user safety		

	Program verification	PCC
programmer "friendly"	S	
high-level proofs	V	
end-user safety		

	Program verification	PCC
programmer "friendly"	S	
high-level proofs	V	
end-user safety		V

	Program verification	PCC
programmer "friendly"	S	
high-level proofs	V	
end-user safety		V

Can we write programs in a high-level language, provide correctness proofs for them and then compile them to provably correct executable code?

A hybrid system

• Given $n \in \mathbb{N}$, find the greatest $r \in \mathbb{N}$ such that $r^2 \leq n$

• Given $n \in \mathbb{N}$, find the greatest $r \in \mathbb{N}$ such that $r^2 \leq n$

```
int root (int n) {
    int y = 0;
    while ((y+1)*(y+1) <= n) y++;
    return y;
}</pre>
```

- Given $n \in \mathbb{N}$, find the greatest $r \in \mathbb{N}$ such that $r^2 \leq n$
- //@ predicate leRoot(intr, int x) { $r \ge 0 \land r^2 \le x$ } //@ predicate isRoot(intr, int x) { $leRoot(r, x) \land (r+1)^2 > x$ }

```
int root (int n) {
    int y = 0;
    while ((y+1)*(y+1) <= n) y++;
    return y;
}</pre>
```

- Given $n \in \mathbb{N}$, find the greatest $r \in \mathbb{N}$ such that $r^2 \leq n$
- //@ predicate leRoot(intr, int x) { $r \ge 0 \land r^2 \le x$ } //@ predicate isRoot(intr, int x) { $leRoot(r, x) \land (r+1)^2 > x$ }

```
/*@ requires n ≥ 0
  @ ensures isRoot(\result, n)
  @*/
int root (int n) {
  int y = 0;
  while ((y+1)*(y+1) <= n) y++;
  return y;
}</pre>
```

- Given $n \in \mathbb{N}$, find the greatest $r \in \mathbb{N}$ such that $r^2 \leq n$
- //@ predicate leRoot(intr, int x) { $r \ge 0 \land r^2 \le x$ } //@ predicate isRoot(intr, int x) { $leRoot(r, x) \land (r+1)^2 > x$ }

```
/*@ requires n ≥ 0
    @ ensures isRoot(\result, n)
    @*/
int root (int n) {
    int y = 0;
    //@ invariant leRoot(y, n)
    while ((y+1)*(y+1) <= n) y++;
    return y;
}</pre>
```

Proof obligations

in Why/Caduceus

11/19

1.
$$\forall n \in \mathbb{Z}$$
.
 $n \ge 0 \Rightarrow leRoot(0, n)$
2. $\forall n, y \in \mathbb{Z}$.
 $n \ge 0 \land leRoot(y, n) \land (y+1)^2 \le n \Rightarrow$
 $leRoot(y+1, n)$
3. $\forall n, y \in \mathbb{Z}$.
 $n \ge 0 \land leRoot(y, n) \land (y+1)^2 > n \Rightarrow$
 $isRoot(y, n)$

They are all automatically discharged, using the definitions of leRoot and isRoot

Proof obligations

```
translation to _{H}^{-}
```

$$\begin{array}{rcl} \operatorname{root} & \triangleright & \forall n: \mathbb{Z}. \forall n^* \colon (n \geq 0). \operatorname{sint} n \twoheadrightarrow \exists x: \mathbb{Z}. \exists x^* \colon \operatorname{isRoot} x \, n. \operatorname{sint} x \\ & = & \operatorname{poly} n: \mathbb{Z}. \operatorname{poly} n^* \colon (n \geq 0). \operatorname{lambda} n \colon \operatorname{sint} n. \\ & (\operatorname{fix} \operatorname{loop} \colon \forall y: \mathbb{Z}. \forall y^* \colon \operatorname{leRoot} y \, n. \operatorname{sint} y \twoheadrightarrow \\ & \exists x: \mathbb{Z}. \exists x^* \colon \operatorname{isRoot} x \, n. \operatorname{sint} x. \\ & \operatorname{poly} y: \mathbb{Z}. \operatorname{poly} y^* \colon \operatorname{leRoot} y \, n. \operatorname{lambda} y \colon \operatorname{sint} y. \\ & \operatorname{if} \left[\clubsuit, \clubsuit\right] \left((y + \operatorname{cint} [1])^2 > n, \\ & p_1^* \cdot \operatorname{pack} (y, \operatorname{pack} (\clubsuit, y) \text{ as } \exists y^* \colon \operatorname{isRoot} y \, n. \operatorname{sint} y) \text{ as} \\ & \exists x: \mathbb{Z}. \exists x^* \colon \operatorname{isRoot} x \, n. \operatorname{sint} x, \\ & p_2^* \cdot \operatorname{loop} & [y+1] & [\clubsuit\right] & (y + \operatorname{cint} [1]))) \\ & [0] & [\clubsuit] \operatorname{cint} [0] \end{array}$$

Proof obligations

from $_{H}^{-}$ to $_{H}$

Proof-preserving compilation (i)

Continuation passing style (CPS) from $_H$ to $_K$

- Functions do not return
- One more parameter: the continuation
- Jumps instead of calls
- Control flow is explicit
- Optimizing transformations can be applied
- $\sim \sim 20$ lines for the square root example

Proof-preserving compilation (ii)

Closure conversion

from $_K$ to $_C$

- Functions only use local data
- One more parameter: the closure
- More optimizing transformations can be applied
- \sim 200 lines for the square root example

Proof-preserving compilation

Hoisting

from $_C$ to $_A$

(iii)

- All functions become top-level blocks
- Memory allocation is explicit
- \sim 200 lines for the square root example

Proof-preserving compilation (iv)

Typed assembly language (TAL)

from $_A$ to TAL

- RISC
- We assume infinite registers
 - no spilling phase
 - trivial register allocation
- We assume a garbage collector
- \sim 500 lines for the square root example

Proof-preserving compilation (v)

Beyond compilation

- Low Level Virtual Machine (LLVM)
- Direct translation from TAL to LLVM
- Direct translations from LLVM to native code for many architectures

x86, x86-64, PowerPC 32/64, ARM, Thumb, IA-64, Alpha, SPARC, MIPS, CellSPU

Long, long way to go...

- Long, long way to go...
- Most problems on the source level
 - what language(s)?
 - what logic(s)?
 - can programmers easily prove things?
 - scalability?

- Long, long way to go...
- Most problems on the source level
 - what language(s)?
 - what logic(s)?
 - can programmers easily prove things?
 - scalability?
- Efficient representations for certified binaries?

- Long, long way to go...
- Most problems on the source level
 - what language(s)?
 - what logic(s)?
 - can programmers easily prove things?
 - scalability?
- Efficient representations for certified binaries?
- Can modern compilers be proof-preserving?

Thank you!

- Long, long way to go...
- Most problems on the source level
 - what language(s)?
 - what logic(s)?
 - can programmers easily prove things?
 - scalability?
- Efficient representations for certified binaries?
- Can modern compilers be proof-preserving?