
Mechanized Proofs of Type Safety
for a Family of Lambda Calculi with References

Michalis A. Papakyriakou Nikolaos S. Papaspyrou
School of Electrical and Computer Engineering, National Technical University of Athens, Greece.

mpapakyr@softlab.ntua.gr nickie@softlab.ntua.gr

Introduction Type systems typically guarantee a number of in-
terrelated safety properties, e.g. memory safety (programs can only
access appropriate memory locations) and control safety (programs
can only transfer control to appropriate program points). Given a
formal definition of a programming language, researchers are inter-
ested in proving type safety, in the sense that the static type system
precludes classes of dynamic errors when executing programs.

This work presents our experience with the mechanical proof
of type safety for the following family of λ-calculi, using the
Isabelle/HOL proof assistant [8].

• λ→ is the simply typed λ-calculus (used as reference);
• λref is an extension of λ→ with ML-style mutable refer-

ences supporting reference allocation, dereferencing and type-
preserving (weak) assignment [10, ch.13];

• λ∀, ref is an extension of F2 with (polymorphic) references, as
above, under the value restriction; and

• λref, free is an extension of λref with a linear type system sup-
porting safe deallocation (free) of references.

Related Work The study of languages with polymorphic refer-
ences and their metatheory is not new. Tofte proved type safety
for polymorphic references using co-induction and Harper showed
how a proof can be arranged so that there is no need for co-
induction. Recent research has focused on fully-fledged languages
with mutable references, such as ML [6, 2] and Java [12, 5]. Sub-
structural type systems in relation to reference and region man-
agement have also been investigated by many researchers recently
[14, 4]. Mechanized proofs exist in the Twelf proof assistant

Our Approach and Results The proofs for the first three lan-
guages do not deviate much from the standard style for call-by-
value typed λ-calculi [10], with the exception of substitution func-
tions for types that were used in the proof for λ∀, ref . In the proof
for λref, free, however, which combines references with a substruc-
tural type system [11, ch.1], we encountered several issues pertain-
ing to proof engineering that are worth mentioning (and cannot be
presented in this confined space). For the representation of bound
variables we used the “locally nameless” technique [7, 1]. Table 1
gives an estimate of the size of the proofs.1

Conclusion To the best of our knowledge, this is first fully mech-
anized type safety proof in Isabelle/HOL for a language with mu-
table references and impredicative polymorphism, λ∀, ref , and for a
language with linear references and safe deallocation, λref, free.

Future Work We intend to investigate the interplay between lin-
ear references (used in deallocation and strong assignment) and un-
restricted references (used in dereferencing and weak assignment).
The language λref, free is not useful without a safe way to convert
between these two. However, the let! construct in Wadler’s work

1 The complete Isabelle/HOL source code is available from ftp://ftp.
softlab.ntua.gr/pub/users/nickie/papers/wmm2007.tar.gz.

Table 1. Lines of code in Isabelle/HOL, per language and file.

File λ→ λref λ∀, ref λref, free

Environ.thy 46 46 46 46
Syntax.thy 94 116 699 139
Typing.thy 74 83 738 366
Semantics.thy 47 143 138 231
Metatheory.thy 153 553 1151 2865
Total 414 941 2772 3647

[13] and other similar constructs [9, 3] usually impose severe re-
strictions to maintain type safety or excessively complicate the lan-
guage. We are currently looking for natural, type safe extensions of
λref, free that do not suffer from these problems.

References
[1] B. Aydemir, A. Charguéraud, B. C. Pierce, and S. Weirich. Engineer-

ing aspects of formal metatheory, 2007. Manuscript, available from
www.cis.upenn.edu/∼bcpierce/papers/binders.pdf.

[2] C. Dubois. Proving ML type soundness within Coq. In Proc. TPHOLs
’00, pp. 126–144, 2000.

[3] M. Fahndrich and R. DeLine. Adoption and focus: Practical linear
types for imperative programming. In Proc. PLDI ’02, pp. 13–24,
2002.

[4] M. Fluet, G. Morrisett, and A. Ahmed. Linear regions are all you
need. In Proc. ESOP’06, pp. 7–21, 2006.

[5] G. T. Leavens, D. A. Naumann, and S. Rosenberg. Preliminary
definition of core JML. Technical Report CS 2006-07, Stevens
Institute of Technology, 2006.

[6] D. K. Lee, K. Crary, and R. Harper. Towards a mechanized
metatheory of Standard ML. In Proc. POPL ’07, pp. 173–184,
2007.

[7] C. McBride and J. McKinna. Functional pearl: I am not a number;
I am a free variable. In Proc. ACM SIGPLAN Haskell Workshop,
pp. 1–9, 2004.

[8] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, LNCS vol. 2283. Springer,
2002. Updated documentation available from www.cl.cam.ac.
uk/research/hvg/Isabelle/documentation.html.

[9] M. Odersky. Observers for linear types. In Proc. ESOP ’92, pp. 390–
407, 1992.

[10] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[11] B. C. Pierce, editor. Advanced Topics in Types and Programming

Languages. MIT Press, 2005.
[12] D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization,

Type Safety and Hoare Logic. PhD thesis, Technische Universität
München, 2001.

[13] P. Wadler. Linear types can change the world! In Proc. IFIP TC
2 Working Conference on Programming Concepts and Methods,
pp. 347–359, 1990.

[14] D. Walker and K. Watkins. On regions and linear types. In Proc.
ICFP ’01, pp. 181–192, 2001.

ftp://ftp.softlab.ntua.gr/pub/users/nickie/papers/wmm2007.tar.gz
ftp://ftp.softlab.ntua.gr/pub/users/nickie/papers/wmm2007.tar.gz
www.cis.upenn.edu/~bcpierce/papers/binders.pdf
www.cl.cam.ac.uk/research/hvg/Isabelle/documentation.html
www.cl.cam.ac.uk/research/hvg/Isabelle/documentation.html

