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Abstract. We consider network congestion games in which a finite num-
ber of non-cooperative users select paths. The aim is to mitigate the
inefficiency caused by the selfish users by introducing taxes on the net-
work edges. A tax vector is strongly (weakly)-optimal if all (at least one
of) the equilibria in the resulting game minimize(s) the total latency.
The issue of designing optimal tax vectors for selfish routing games has
been studied extensively in the literature. We study for the first time
taxation for networks with atomic users which have unsplittable traffic
demands and are heterogeneous, i.e., have different sensitivities to taxes.
On the positive side, we show the existence of weakly-optimal taxes for
single-source network games. On the negative side, we show that the
cases of homogeneous and heterogeneous users differ sharply as far as
the existence of strongly-optimal taxes is concerned: there are parallel-
link games with linear latencies and heterogeneous users that do not
admit strongly-optimal taxes.

1 Introduction

We consider atomic network congestion games with unsplittable traffic demands,
where a finite number of non-cooperative users select each a path from a specified
source to a sink in an underlying network. The users experience a load-dependent
latency on their chosen paths. Being selfish, they want to choose a minimum-
latency path. The solution concept we study is that of a pure Nash equilibrium,
where no user has an incentive to unilaterally switch to a different path. It is
well-known that this type of game always has at least one pure Nash equilibrium
[13].

? Research partially supported by an NTUA Basic Research Grant (PEBE 2009) and
by an NSERC Discovery grant.
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The users induce a social cost to the system, which in this work we define
as the total latency. Selfish behavior leads typically to suboptimal social cost at
equilibrium. A long series of papers has studied the inefficiency of Nash equilibria
for congestion games as quantified by the price of anarchy. See the surveys [10,
8] for an introduction to the very rich literature on the topic.

In order to offset the inefficiency of uncoordinated users, a common approach
is to introduce fixed taxes (or tolls) on the edges of the network. The users will
experience the taxes as part of their individual disutility, in addition to their
latency. The aim is to design an optimal tax vector steering the selfish users to
an equilibrium with desirable characteristics; in our case the desired target is
minimum total latency.

Related Work. In the non-atomic setting, where there is an infinite number
of users and each user controls an infinitesimal amount of traffic demand, the
problem of designing optimal tax vectors has been studied extensively. A classic
result going all the way back to Pigou [12] states that marginal cost taxes induce
the optimal traffic pattern for homogeneous users [2]. A significant volume of re-
cent work on optimal taxes for non-atomic congestion games considers the more
intriguing and realistic case of heterogeneous users, which may have different
valuations of time (latency) in terms of money (taxes). Yang and Huang [17]
established the existence of optimal taxes for non-atomic asymmetric network
congestion games4 with heterogeneous users. Subsequently, their result was re-
discovered by Fleischer, Jain, and Mahdian [5], and Karakostas and Kolliopoulos
[9]. Previously the the single-source special case had been investigated by Cole,
Dodis, and Roughgarden [4]. The existence of optimal taxes for non-atomic con-
gestion games with heterogeneous users follows from Linear Programming du-
ality, and thus an optimal tax vector can be computed efficiently by solving a
linear program.

For non-atomic games, under mild assumptions on the latency functions the
edge flow at equilibrium is unique. Hence the taxes of [2, 4, 5, 9, 17] induce the
optimal solution as the unique edge flow of the equilibria of the game with taxes.
On the other hand, atomic congestion games, even with splittable traffic, may ad-
mit many different Nash equilibria, possibly with different edge flows. Therefore,
when considering atomic games, one has to distinguish between weakly-optimal
tax vectors, for which at least one Nash equilibrium of the game with taxes
minimizes the total latency, and strongly-optimal tax vectors, for which all Nash
equilibria of the game with taxes minimize the total latency.

For atomic congestion games with splittable traffic and heterogeneous play-
ers, Swamy [14] proved that weakly-optimal tax vectors exist and can be com-
puted efficiently by solving a convex program. As for atomic congestion games
with unsplittable traffic, the existence and efficient computation of optimal taxes
has been studied only in the restricted setting of homogeneous users. Caragian-
nis, Kaklamanis, and Kanellopoulos [3] considered atomic games with linear
latency functions and homogeneous users, and investigated how much taxes can

4 A network congestion game is symmetric if all users share the same source and sink
and, in the case of atomic games, have the same traffic demand.



Taxes for Network Congestion Games with Heterogeneous Users 3

improve the price of anarchy. On the negative side, they established that if the
users either do not share the same source and sink or have different traffic de-
mands, then strongly-optimal taxes may not exist. In particular, Caragiannis et
al. presented a non-symmetric game for which any tax vector induces a Nash
equilibrium of total latency at least 6/5 times the optimum, and a parallel-link
game with user-specific traffic demands for which any tax vector induces an equi-
librium of total latency at least 9/8 times the optimum. On the positive side,
they presented an efficient construction of strongly-optimal taxes for parallel-
link games with linear latencies and unit-demand users. Subsequently, Fotakis
and Spirakis [7] proved that weakly-optimal taxes exist and can be computed
efficiently for atomic symmetric network congestion games, and that such taxes
are strongly-optimal if the network is series-parallel.

Contribution. Despite the considerable interest in optimal taxes for non-atomic
games with heterogeneous users and for atomic games with homogeneous users,
it is unknown whether weakly- or strongly-optimal taxes exist for atomic network
games with heterogeneous users. The case of heterogeneous users is substantially
different, and more complicated, than that of homogeneous users, since the game
with taxes is a congestion game with player-specific additive constants [11].

In this work, we study for the first time the existence of optimal taxes for
atomic network games with heterogeneous users, and present two complementary
and essentially best-possible results. On the positive side, we prove the existence
of weakly-optimal taxes in single-source network congestion games with heteroge-
neous users (cf. Section 3). To establish this result, we follow the proof technique
of [9], and show that any acyclic traffic pattern is induced as a Nash equilibrium
of the game with the taxes calculated as in [9, Theorem 1]. Our result is sig-
nificantly stronger that any previously known positive result on weakly-optimal
taxes for atomic congestion games. In particular, our result generalizes previ-
ous results of [3, 7] not only in the direction of considering heterogeneous users,
but also in the direction of considering non-symmetric games on single-source
multiple-sink networks.

On the negative side, we show that users’ heterogeneity precludes the ex-
istence of strongly-optimal taxes even on the simplest topology of parallel-link
networks. More specifically, we present a parallel-link game with linear latency
functions and heterogeneous users for which any tax vector induces an equilib-
rium with total latency at least 28/27 times the optimum. Hence, we establish
a dichotomy between the general case of heterogeneous users and the special
case of homogeneous ones, as far as the existence of strongly-optimal taxes is
concerned.

To the best of our knowledge, this is the first time in congestion games that a
dichotomy is established (i) between the cases of homogeneous and heterogeneous
users with respect to the existence of optimal taxes, and (ii) between the cases
of non-atomic and atomic users on parallel links with respect to the efficiency of
a price-of-anarchy-reducing mechanism. For the latter, we note that the worst-
case price of anarchy for atomic games on parallel links is the same as the worst-
case price of anarchy for non-atomic congestion games (see e.g. [15, 6]), and
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that the two classes of congestion games have similar behaviour with respect to
their worst-case price of anarchy under some common price-of-anarchy-reducing
mechanisms, such as Stackelberg strategies (see e.g. the bounds in [14, 6] on the
efficiency of Stackelberg strategy LLF for non-atomic and atomic parallel-link
games) and taxes for homogeneous users.

2 Preliminaries

We consider a network congestion game G(l) defined on a directed graph G =
(V, E) with a nondecreasing latency function le : IR+ → IR+ on each edge e ∈ E.
A set N of users is given, each with an amount of traffic (flow) to be routed
from an origin node to a destination node of G. The users are non-atomic if
each has infinitesimal demand and atomic otherwise. The game is single-source
(resp. single-sink) if all users share the same origin (resp. destination) node, and
symmetric if all users share the same origin-destination pair and have the same
traffic demand.

Each user α has a positive tax-sensitivity factor a(α) > 0. We will assume
that the tax-sensitivity factors for all users come from a finite set of possible
positive values. We call the users heterogeneous if there are at least two distinct
sensitivity values and homogeneous otherwise. Unless we declare them explicitly
to be heterogeneous, the users are assumed to be homogeneous. We can bunch
together into a single user class all the users with the same origin-destination pair
and with the same tax-sensitivity factor; let k be the number of different such
classes. We denote by di,Pi, a(i) the total traffic demand of class i, the paths
that can be used by class i, and the tax-sensitivity of class i, for all i = 1, . . . , k
respectively. Thus each user in class i selects a path in Pi and routes her traffic
though it. We set P

.
= ∪i=1,...,kPi the union of paths used by all classes. In the

following, we assume that the game is single-source and the users are atomic and
have unit demands, unless it is stated otherwise.

A configuration f is a tuple f = (f j)j∈N consisting of a path f j from the
corresponding origin node to the corresponding destination node for each user
j. Given a configuration f , we let fP denote the total traffic routed through any
path P ∈ P , and let fe =

∑
e3P fP denote the total traffic routed through any

edge e ∈ E. Given a configuration f , we refer to the traffic vector (fe)e∈E as
the (edge-)flow induced by f . We note that different configurations may induce
the same edge-flow. We say that a flow f is feasible (with respect to an atomic
network congestion game G(l)) if there is a configuration f of G(l) which routes
traffic fe through any edge e. We slightly abuse the notation by letting the
same symbol denote both a configuration and the feasible flow induced by it. A
configuration (or the corresponding flow) f is acyclic if for any cycle C in the
underlying network G, there is an edge e ∈ C with fe = 0.

The latency function le : IR+ → IR+ assigned to each edge e gives the
latency experienced by any user on e due to the congestion caused by the traffic
routed through e. We assume that the functions le are nondecreasing, and that
le(fe) > 0 when fe > 0, i.e., the function le is positive.
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For any configuration f and path P ∈ P , the latency of P is lP (f) =∑
e∈P le(fe). The individual cost of a user j in a configuration f is cj(f) =∑
e∈fj le(fe), i.e., the latency on her path in f . A configuration f is a pure

Nash equilibrium of G(l) if no user can improve her individual cost by uni-
laterally deviating from f . Formally, for a tuple x = (x1, . . . , xn), let x−i =
(x1, . . . , xi−1, xi+1, . . . , xn) and (x−i, x

′
i) = (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn). Con-

figuration f is a pure Nash equilibrium if cj(f) ≤ cj(f−j , P ) for any user j in
any class i and any path P ∈ Pi.

A flow f satisfies the Wardrop principle [16] if for each class i, the latency on
all paths in Pi used by f is no greater than the latency on any other path in Pi.
A non-atomic (atomic) Wardrop equilibrium is a (feasible) flow f that satisfies
the Wardrop principle. We distinguish between atomic and non-atomic Wardrop
equilibria, depending on whether the users are atomic or not. An atomic Wardrop
equilibrium is also a pure Nash equilibrium, while the converse may not be true.

If every edge is assigned a tax (also called toll) βe ≥ 0, the resulting game is
denoted as G(l + β). Given a configuration f in G(l + β), the individual cost of
a user j included in a class i is: cj

β(f) =
∑

e∈fj le(fe) + a(i)
∑

e∈fj βe.

Let f̂ be a configuration that minimizes the total latency
∑

e fele(fe) over
all configurations of G(l). Although in certain cases (e.g., when the functions

fele(fe) are convex) the flow f̂ can be computed efficiently, for more general

latency functions it may be intractable to compute f̂ . We will assume that f̂ is
given to us off-line and that it induces a finite latency on every edge. A tax vector
β weakly induces a feasible (non-atomic) flow f if f is a pure Nash (non-atomic
Wardrop) equilibrium of G(l + β). A tax vector β is called weakly-optimal if it
weakly induces a pure Nash equilibrium f whose total latency

∑
e∈E fele(fe) is

equal to the optimal total latency
∑

e f̂ele(f̂e). A tax vector β is called strongly-
optimal, if every pure Nash equilibrium it induces in G(l + β) has total latency

equal to the optimal total latency
∑

e f̂ele(f̂e).
Let F (x) = (F1(x), F2(x), . . . , Fn(x)) be a vector-valued function from the

n-dimensional space R
n into itself. Then the nonlinear complementarity problem

of mathematical programming is to find a vector x that satisfies the following
system:

xT F (x) = 0, x ≥ 0, F (x) ≥ 0.

3 Existence of Weakly-Optimal Taxes

In this section we consider networks with a single-source s and heterogeneous
users. Each user class i consists of a single user who wishes to route di units of
traffic through a single s− ti path. We show that if di = 1 (or more generally, if
di are arbitrary and the optimal configuration is acyclic), there exists a vector
of weakly-optimal taxes. In particular, we establish the existence of a tax vector
that weakly induces any acyclic flow f̂ as an atomic Wardrop equilibrium. Since
single-source network congestion games with unit-demand users admit an acyclic
optimal flow f̂ , this implies the existence of weakly optimal taxes for such games.
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The proof follows closely [9], where the existence of weakly-optimal taxes is
shown for the non-atomic case, and here we give a sketch with the new elements
added for our case. In [9], it is shown that, if we add to the network artificial

capacity constraints, fe ≤ f̂e, ∀e ∈ E, there is a tax-vector β∗ that induces
as a non-atomic Wardrop equilibrium a flow f∗ that satisfies demands di and
respects the capacities. In particular, [9] shows that the following nonlinear com-

plementarity problem always has a solution (details omitted). Moreover, if f̂ is
given offline, this solution can be computed in polynomial time.

fP (TP (f) − ui) = 0 ∀i, ∀P ∈ Pi (BIG CP)

TP (f) ≥ ui ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP − di) = 0 ∀i

∑

P∈Pi

fP ≥ di ∀i

βe(fe − f̂e) = 0 ∀e ∈ E

fe ≤ f̂e ∀e ∈ E

fP , βe, ui ≥ 0 ∀P, e, i

Here the function TP (f) is set to lP (f)/a(i) +
∑

e∈P β∗
e , ∀P ∈ Pi, ∀i.

Lemma 1. Let f̂ be an acyclic feasible flow for demands di, and let (f∗, β∗, u∗)

be any solution of (BIG CP). Then
∑

P∈Pi
f∗

P = di, ∀i and f∗
e = f̂e, ∀e ∈ E.

Proof. The proof of the first part is essentially the same as the proof by contra-
diction of Proposition 4.1 in [1] and is omitted.

Vector f∗ is a non-atomic flow, that satisfies the following set of constraints:

∑

P∈Pi

fP = di ∀i ∈ {1, . . . , k} (1)

fe =
∑

P∈P:e∈P

fP ∀e ∈ E (2)

fe ≤ f̂e ∀e ∈ E (3)

fP ≥ 0 ∀P ∈ P (4)

Consider the network which consists only of the edges e of G with f̂e > 0.
Augment this network by adding a super-sink t and an edge (ti, t) from each
of the old sinks to t. Call G

f̂
the resulting network. Extend f∗ to an s-t flow

in G
f̂

by setting f∗
(ti,t)

= di. Let (S, T ) be any cut that separates s from t in

G
f̂
. Since f̂ is acyclic, it must be that

∑
e∈δ(S) f̂e =

∑k

i=1 di. Because of (1), it

must be that
∑

e∈δ(S) f∗
e ≥

∑k

i=1 di =
∑

e∈δ(S) f̂e. By the capacity constraints

(3), we conclude that
∑

e∈δ(S) f∗
e =

∑
e∈δ(S) f̂e, and in particular, that f∗

e = f̂e
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for all edges e that cross the cut. The only edges of G on which f∗ might send
positive flow are the edges of G

f̂
. Any such edge e belongs to at least one s-t

cut in G
f̂
. By applying the previous argument to such a cut, it follows that

f∗
e = f̂e, ∀e ∈ E. �

Then [9] establishes that we can use β∗ as a tax vector to weakly induce f∗ as
a non-atomic Wardrop equilibrium in the original network without the capacity
constraints. This follows from the fact that we can use β∗ as a tax vector to
ensure that (f∗, u∗) is also a solution to the following complementarity problem:

(TP (f) − ui)fP = 0 ∀i, ∀P ∈ Pi (CP)

TP (f) − ui ≥ 0 ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP − di) = 0 ∀i

∑

P∈Pi

fP ≥ di ∀i

f, u ≥ 0

If the path latency functions are continuous and positive, Aashtiani and Mag-
nanti [1] show that the Wardrop equilibria of the game G(l+β) can be described
as the solutions to (CP). TP above denotes the cost of a user that uses path P , fP

is the flow through path P , and u = (u1, . . . , uk) is the vector of shortest travel
times for the commodities. The first two equations model Wardrop’s principle
by requiring that for any origin-destination pair i, the travel cost for all paths
in Pi with nonzero flow is the same and equal to ui. The remaining equations
ensure that the demands are met and that the variables are nonnegative.

The fact that for all e ∈ E, f∗
e = f̂e proves that the tax vector β∗ we compute

weakly induces as an equilibrium the atomic solution f̂ as well. We have thus
shown the following theorem, which is the main result of this section.

Theorem 1. Let all atomic heterogeneous users share the same source, and let
f̂ be any acyclic feasible flow. If for every edge e ∈ E, le() is a nondecreasing

positive function, then there is a tax vector β ∈ R
|E|
+ such that, there is an atomic

Wardrop traffic equilibrium f̄ for the game G(l + β), where f̄e = f̂e, ∀e ∈ E.

Given f̂ , β can be computed in polynomial time.

If the latency functions are strictly increasing, the uniqueness results from [1]

yield that f̂ is the only Wardrop atomic equilibrium induced by the tax vector
of the theorem.

Single-source network congestion games with unit-demand users and nonde-
creasing latency functions admit an acyclic optimal flow f̂ . Moreover, if for all
e ∈ E, xle(x) are convex, such an optimal flow can be computed in polyno-
mial time by a min-cost flow computation. Therefore, we obtain the following
corollary of Theorem 1:
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Corollary 1. Let G(l) be an atomic network congestion with nondecreasing la-
tency functions and heterogeneous users, where all users share the same source
and have the same traffic demand. Then G(l) admits a weakly-optimal tax vec-
tor β. Furthermore, if for all edges e, xle(x) is convex, β can be computed in
polynomial time.

Theorem 1 states that computing the weakly-optimal tax vector β for an
acyclic optimal flow f̂ is not substantially harder than computing f̂ : if f̂ can
be computed in polynomial time, β can also be computed in polynomial time.
An interesting question is whether computing the tax vector β of Theorem 1
is substantially easier than computing the corresponding acyclic optimal flow
f̂ . The following theorem practically excludes this possibility. In particular, we
show that given the weakly-optimal tax vector β of Theorem 1, we can decide
in polynomial time whether the optimal total latency is bounded from above by
a given number. So the problem of computing the weakly-optimal tax vector β
is at least as difficult as the problem of determining the optimal total latency.

Theorem 2. For atomic games with user-specific demands, if the optimal flow
f̂ is not given, it is NP -hard to compute the taxes whose existence is established
by Theorem 1. This holds even for parallel-link games with homogeneous users.

Proof. We employ a Turing reduction from Partition. We consider an instance
of the decision version of Partition, i.e., a set of integers {a1, . . . , an} whose
total sum is 2B for some B > 0. For every integer ai, we create a user with
demand ai and tax-sensitivity 1. Every partition of the users into two sets, one
with total sum B − T and the other with total sum B + T for some T ≥ 0,
induces in the network with two parallel links and latency function l(x) = x, a
corresponding acyclic routing of the users whose total cost is

(B − T )2 + (B + T )2 = 2B2 + 2T 2.

This quantity is minimized for T = 0, i.e., when the Partition instance
is a YES-instance. Assume now that you can compute in polynomial time the
taxes of Theorem 1. Because the latency functions are strictly increasing, the
Wardrop equilibrium is unique in terms of edge flows [1]. Moreover, it is well-
known that the equilibrium solution f can be computed in polynomial time
by solving a convex quadratic mathematical program [2]. By Theorem 1, on
each of the two parallel edges, the value of f will be equal to value of the
optimal unsplittable solution. Checking these values, we can determine whether
the Partition instance is a YES-instance. �

Unfortunately, it is known that the taxes of Theorem 1 are not in general
strongly-optimal. Note that for homogeneous users, our taxes are cost-balancing
in the sense of Fotakis and Spirakis [7]. They give an example of a symmetric
network congestion game, with homogeneous users, where the cost-balancing
taxes induce an a pure Nash equilibrium of total latency 1.13 times the optimum.
In the full version of the paper we give another such example where the cost-
balancing taxes induce a pure Nash equilibrium of total latency (1.2 − ε) times
the optimum.
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4 Inexistence of Strongly-Optimal Taxes

We proceed to show that that atomic congestion games with heterogeneous users
may not admit strongly-optimal taxes, even for parallel-link games with linear
latencies and unit-demand users.

Theorem 3. There exists a parallel-link game with linear latencies and hetero-
geneous unit-demand users, for which any tax vector induces an equilibrium with
total latency at least 28/27 times the optimal total latency.

Proof. We consider a game G(l) on 3 parallel links with latency functions l1(x) =
7, l2(x) = 2x, and l3(x) = x + 1. There are 6 unit-demand users, 2 users with
tax-sensitivity 1 and 4 users with tax-sensitivity 1/2. The unique optimal flow
assigns a single user to link 1, 2 users to link 2, and 3 users to link 3, and achieves
a total latency of 27. Any other feasible flow has total latency at least 28. In the
following, we show that any weakly-optimal tax vector β induces an equilibrium
of total latency at least 28, and thus this game does not admit strongly-optimal
taxes. The proof proceeds by considering different cases depending on the 5
optimal allocations of heterogeneous users.

Case I: We consider an optimal flow that assigns a user with tax-sensitivity 1
to link 1, the other user with tax-sensitivity 1 and a user with tax-sensitivity 1/2
to link 2, and 3 users with tax-sensitivity 1/2 to link 3 (we denote such a con-
figuration as 〈(1), (1, 1/2), (1/2, 1/2, 1/2)〉). Let β = (β1, β2, β3) be any (weakly-
optimal) tax vector that induces the particular configuration as an equilibrium
of G(l + β). No user has an incentive to deviate from its assigned link; writing
down the corresponding inequalities, we obtain that β must satisfy the following:

1 + β1 ≤ β2 ≤ 3 + β1 (5)

β2 − 1 ≤ β3 ≤ 4 + β2 (6)

2 + β1 ≤ β3 ≤ 6 + β1 (7)

If β is strongly-optimal, configuration 〈(1, 1), (1/2, 1/2), (1/2, 1/2)〉 is not an
equilibrium of G(l + β). Therefore at least one user in that configuration has an
incentive to deviate, and β must satisfy at least one of the following:

β2 < 1 + β1 (8)

β3 < 3 + β1 (9)

6 + β1 < β2 (10)

β3 < β2 (11)

8 + β1 < β3 (12)

6 + β2 < β3 (13)

We observe that (8) contradicts (5), (10) contradicts (5), (12) contradicts
(7), and (13) contradicts (6). Hence, if β is strongly optimal, either β3 < 3 + β1

or β3 < β2 (ie. β3 must be “small”).
Moreover, if β is strongly-optimal, 〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉 is not an

equilibrium of G(l + β), and β must satisfy at least one of the following:

3 + β1 < β2 (14)

β3 < β2 − 2 (15)

4 + β1 < β3 (16)

2 + β2 < β3 (17)
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We observe that (14) contradicts (5) and (15) contradicts (6). Hence, if β is
strongly optimal, either β3 > 4 + β1 or β3 > 2 + β2 (ie. β3 must be “large”).

If β3 < 3+β1, neither β3 > 4+β1 nor β3 > 2+β2 is possible (note that 3+β1 >
β3 > 2+β2, which contradicts (5) ). If β3 < β2, neither β3 > 2+β2 nor β3 > 4+β1

is possible (note that β2 > β3 > 4 + β1, which contradicts (5) ). Therefore, any
tax vector that induces optimal configuration 〈(1), (1, 1/2), (1/2, 1/2, 1/2)〉 as
an equilibrium of G(l + β) also induces either 〈(1, 1), (1/2, 1/2), (1/2, 1/2))〉 or
〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉 (both of total latency 28) as an equilibrium.

Case II: We consider optimal configuration 〈(1), (1/2, 1/2), (1, 1/2, 1/2)〉. Work-
ing as in Case I, we obtain that any tax vector β = (β1, β2, β3) that induces this
configuration as an equilibrium of G(l + β) must satisfy the following:

1 + β1 ≤ β2 ≤ 5 + β1 (18)

β2 − 2 ≤ β3 ≤ 2 + β2 (19)

2 + β1 ≤ β3 ≤ 3 + β1 (20)

In fact, the right-hand side of (18) follows from β2 − 2 ≤ β3 ≤ 3 + β1.
Considering configuration 〈(1, 1), (1/2, 1/2), (1/2, 1/2)〉 and working as in

Case I, we obtain that if β is strongly-optimal, either β3 < 3 + β1 or β3 < β2.
Considering configuration 〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉, we obtain that if β is
strongly-optimal, either β2 > 3 + β1 (note that (14) does not contradict (18)),
or β3 > 4 + β1, or β3 > 2 + β2.

Working as in Case I, we show that if β is strongly-optimal, it must satisfy
both β2 > 3 + β1 and β3 < β2 (since β2 > 3 + β1, β3 < 3 + β1 implies β3 < β2,
so β3 must be smaller than β2 in any case), in addition to (18), (19), (20).

Moreover, if β is strongly-optimal, configuration 〈(1, 1), (1/2), (1/2, 1/2, 1/2)〉
is not an equilibrium of G(l+β), and β must satisfy at least one of the following:

β2 < 3 + β1 (21)

β3 < 2 + β1 (22)

10 + β1 < β2 (23)

6 + β3 < β2 (24)

6 + β1 < β3 (25)

β2 < β3 (26)

We observe that (21) contradicts β2 > 3+β1, (22) contradicts (20), (23) con-
tradicts (18), (25) contradicts (20), and (26) contradicts β3 < β2. Furthermore,
(18) and (19) imply that β2 ≤ 5 + β1 ≤ 3 + β3, which contradicts (24). Hence,
any tax vector that induces optimal configuration 〈(1), (1/2, 1/2), (1, 1/2, 1/2)〉
as an equilibrium also induces either configuration 〈(1, 1), (1/2, 1/2), (1/2, 1/2))〉,
or 〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉, or 〈(1, 1), (1/2), (1/2, 1/2, 1/2)〉 (all of total la-
tency 28) as an equilibrium.

Case III: We consider optimal configuration 〈(1/2), (1, 1), (1/2, 1/2, 1/2)〉. Any
tax vector β = (β1, β2, β3) that induces this configuration as an equilibrium of
G(l + β) must satisfy the following:

2 + β1 ≤ β2 ≤ 3 + β1 (27)

β2 − 1 ≤ β3 ≤ 4 + β2 (28)

4 + β1 ≤ β3 ≤ 6 + β1 (29)
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Therefore, any tax vector that induces 〈(1/2), (1, 1), (1/2, 1/2, 1/2)〉 as an
equilibrium of G(l + β) must satisfy (5), (6), and (7), and by Case I, is not
strongly-optimal.

Cases IV and V: Optimal configurations 〈(1/2), (1, 1/2), (1, 1/2, 1/2)〉 and
〈(1/2), (1/2, 1/2), (1, 1, 1/2)〉 are not induced as an equilibrium of G(l + β) by
any tax vectors. In particular, applying the inequalities for possible deviations
between link 1 and link 3, we obtain that any tax vector β that induces any of
the configurations above as an equilibrium must satisfy 4 + β1 ≤ β3 ≤ 3 + β1.

Thus we have considered all optimal allocations of heterogeneous users and
all weakly-optimal tax vectors β, and have shown that any of them induces a
configuration of total latency at least 28 as an equilibrium of G(l + β). �

Remark 1. For the atomic game with homogeneous users corresponding to the
parallel-link game in the proof of Theorem 3, the tax vector (0, 3− δ, 3− δ), for
a sufficiently small δ > 0, is a strongly-optimal tax vector (a slightly different
strongly-optimal tax vector is given by [3, Theorem 1]). For the corresponding
non-atomic game with heterogeneous users, the tax vector (0, 3, 3) is a strongly-
optimal one.

5 Open problems

It is known that for homogeneous users with unit-demands on multicommodity
networks there exist no strongly-optimal taxes [3]. Series-parallel networks is
the largest class for which such taxes have been shown so far to exist [7]. In
this work, we established that when the users are heterogeneous, there are no
strongly-optimal taxes even on the very specialized topology of parallel links.
The challenging open problem stated in [3] remains for future work: determine
the largest class of network congestion games for which strongly-optimal taxes
exist. The candidate class is that of symmetric network games [3], i.e., when
users are homogeneous, have identical demands, and share the same source and
destination on a general-topology network.

Acknowledgement. G. Karakostas and S. Kolliopoulos thank Ioannis Caragiannis
for introducing them to the problem and for valuable discussions.
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